SOLVING QUADRATIC EQUATIONS USING THE QUADRATIC FORMULA

The General Form of a Quadratic Equation: $ax^2 + bx + c = 0$

The Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Discriminant tells the nature of the roots of the equation.

Discriminant	Equation		Function
If $b^2 - 4ac < 0$	\Rightarrow No Real Solutions	\Rightarrow	Has no x intercepts
If $b^2 - 4ac = 0$	\Rightarrow One Real Solution	\Rightarrow	Has one x intercept
If $b^2 - 4ac > 0$	\Rightarrow Two Real Solutions	\Rightarrow	Has two x intercepts

Make sure the correct terminology is used when discussing the solutions.

When the quadratic is in the form of an equation, it is appropriate to call the solutions **roots of the equation**.

When the quadratic is in the form of a function, the roots of the equation are referred to as the **zeros of the function**.

When looking at the graph of the function, the zeros of the function are **the x intercepts of the graph**.

Solve the following using the quadratic formula

a)
$$x^2 - 14x + 33 = 0$$

b) $\frac{1}{3}x^2 - 5x + 12 = 0$

c)
$$4x^2 - 32x + 40 = 0$$

d)
$$3x^2 - 2x + 8 = 0$$