End Behaviors of Polynomial Functions

How do you determine the degree of a polynomial:

in General Form ($ax^n + bx^{n-1} + cx^{n-2} \dots + k$)

in Factored Form:

Give 4 examples of an even degree polynomial and 4 examples of an odd degree polynomial.

Even Degree

Odd Degree

What is the difference with respect to end behaviors of a polynomial function of even degree vs. odd degree?

Even Degree

Odd Degree

Determine the end behaviors of each of the following polynomial functions.

1.
$$f(x) = 3x^{5} + 12x^{4} + 6x - 8$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____
3. $f(x) = -4x^{4} + 6x^{2} - 2x + 1$

As $x \to -\infty$, $f(x) \to$ _____ As $x \to \infty$, $f(x) \to$ _____

5.
$$f(x) = -2x^3(x+2)^2(x-5)(x+1)^2$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

7.
$$f(x) = 4x(x+6)^2(x-1)(x-5)^3$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

9.
$$f(x) = 5x^5 - 12x^4 + 6x^2 - 2x + 1$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

11.
$$f(x) = x^4 - 3x^2 + 8x^5 - 21$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

2.
$$f(x) = -3x^7 + 3x^3 + 2x + 7$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

4.
$$f(x) = -2x^5 - 8x^2 + 36x$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

6.
$$f(x) = 2x(x-5)^2(x+6)^2(x+1)^2$$

As $x \to -\infty$, $f(x) \to$ ____
As $x \to \infty$, $f(x) \to$ ____

8.
$$f(x) = -3(x-1)(x-6)^2$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

10.
$$f(x) = -2x^4 + 7x^3 - 2x^2 + 36x - 18$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____

12.
$$f(x) = -12x^2 - 7x^3 + 3x - 2$$

As $x \to -\infty$, $f(x) \to$ _____
As $x \to \infty$, $f(x) \to$ _____