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Annotated Formulas and Trigonometry Table

Date:

Annotated Formulas

Acceleration in g’s

a
. § = ———
where a is acceleration. & 9.8 m/s”
Circular Motion
Centripetal Acceleration
v 47
a. = — = 5
/ T-
Circular Tangential Speed
27
T
Centripetal Force
F = ma = Me _ mdw’r
‘ ¢ r T?

where a, is the centripetal acceleration, r is the radius of the path, T is the period, v is the
tangential speed, F,. is the centripetal force, and m is mass.

Circumference of a Circle

a
I

(3]

3

C is circumference, r is radius. -

Coefficient of Static Friction -

wo= b ]

S N -

where ., is the coefficient of static friction, f, is the maximum force of static =

friction, and N is the normal force pressing the two surfaces together. n

Elevator/Spring Accelerometer i
mg, + mg = ma, F; = mg,

m

where m is the mass of the object, a is its acceleration, g is the acceleration due

to gravity, g is the observed equivalent acceleration, and f, is the calculated force.  Figure 53.
Spring Accelerometer

Note: This formula is in vector form.
(continued)
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Force/Newton’s Second Law

a= — or f= ma
where a is acceleration, f is force, and m is mass.

Gravitational Potential Energy

PE = mgh

where PE is gravitational potential energy, m is mass, g is the acceleration due to gravity,
and h is the height above the base level.

vertex \
r

Horizontal Acceleration—Accelerometer F

protractor —>

a= gtan 0

where a is the horizontal acceleration, g is the
acceleration due to gravity, and 0 is the angle of
deflection of a bob from the vertical.

Note: This is a scalar formula.

) = el
]

Ideal Angle for Curve Banking

Figure 54.
V2 Horizontal Accelerometer

tan 0 = —g—R;

where 0 is the angle the banked curve makes with the horizontal, v is the velocity of the
object going around the curve, g is the acceleration due to gravity, and R is the radius of
the curve.

Impulse—Change in Momentum

fAt = mAv

where fis average force, At is the time of interaction, m is mass, and Av is the change in speed.

(continued)
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Name: Date:

Kinematics

x =x, + vt + (Yar

v =1y, +at
2
v+,
Vave = 2

v=Vv7? + 2ax
where x is elapsed distance, x, is initial position, v is speed, v, is initial speed, a is
acceleration, 7 is elapsed time, and v, is average speed under uniform acceleration.
Time rate change of distance is called speed.
Time rate change of speed is called acceleration.

Time rate change of acceleration is called jerk.

Kinetic Energy

KE = (YoHymV*
where KE is kinetic energy, m is mass, and v is speed.
Momentum

p = my

where p is momentum, m is mass, and v is speed.

Period/Frequency
1
f= =
where f is frequency and T is period.
Power
po W

t

where P is average power, W is work, and ¢ is elapsed time.

(continued)
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Projectile Motion

Horizontal Motion:

vV, = vcos 0

Vertical Motion:
Y = v — (Vo)gr

V,=vsin0

= 2v,

8

where X is horizontal distance, v, is initial horizontal velocity, ¢ is elapsed time of flight,
v is muzzle velocity, 6 is angle of elevation with respect to the horizontal, Y is vertical distance,
v, is initial vertical velocity, and g is the scalar acceleration due to gravity.

Relative Error

Relative error = (absolute error/accepted value) - 100%
Absolute error is the difference between the accepted and measured values.

Triangulation—Height

sin 0, sin 0 h
Height = [——'——2 b + observer’s height
g sin (01 - 02) g
k b -
Baseline
where 6, and 6, are the base angle measurements and b is the baseline length.  Height Triangulation
Trigonometry Equations
sin ® = sine = opposite/hypotenuse HYP
cos = cosine = adjacent/hypotenuse S
tan 6 = tangent = opposite/adjacent P Figure 35,
0 Sides of a Right Triangle
pey (continued)
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Name: Date:

Trigonometry Equations (continued)

Pythagorean Theorem (right triangles only)
¢ =ad+ b
where a and b are legs of the triangle and c is the hypotenuse.
Law of Cosines (all triangles)
¢ = a’+ b* — 2abcos C

Law of Sines (all triangles)

a b c
sin A sin B sin C

where a, b, and c are legs of the triangle, and A, B, and C
are the angles opposite each side a, b, and ¢ respectively.

N Figure 56.
Angle C > 90°. Law of Sines

Weight
w = mg
where w is weight, m is mass, and g is acceleration due to gravity.

Work

W = fx = f,xcos 0
AKE = (O)mv? — (V)mv,?

where W is work, f is force, x is distance, m is mass, v is final speed, v, is initial speed,
f» 1s horizontal force, and AKE is change in kinetic energy.
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Trigonometry Table

0 SIN COS TAN 0 SIN COs TAN
0 0.0000 1.0000 0.0000 45 0.7071 0.7071 1.0000
1 0.0175 0.9999 0.0175 46 0.7193 0.6947 1.0355
2 0.0349 0.9994 0.0349 47 0.7314 0.6820 1.0724
3 0.0523 0.9986 0.0524 48 0.7431 0.6691 1.1106
4 0.0698 0.9976 0.0699 49 0.7547 0.6561 1.1504
5 0.0872 0.9962 0.0875 50 0.7660 0.6428 1.1918
6 0.1045 0.9945 0.1051 51 0.7772 0.6293 1.2349
7 0.1219 0.9925 0.1228 52 0.7880 0.6157 1.2799
8 0.1392 0.9903 0.1405 53 0.7986 0.6018 1.3270
9 0.1564 0.9877 0.1584 54 0.8090 0.5878 1.3764

10 0.1736 0.9848 0.1763 55 0.8192 0.5736 1.4282
11 0.1908 0.9816 0.1944 56 0.8290 0.5592 1.4826
12 0.2079 0.9782 0.2126 57 0.8387 0.5446 1.5399
13 0.2250 0.9744 0.2309 58 0.8481 0.5299 1.6003
14 0.2419 0.9703 0.2493 59 0.8572 0.5150 1.6643
15 0.2588 0.9659 0.2680 60 0.8660 0.5000 1.7321
16 0.2756 0.9613 0.2868 61 0.8746 0.4848 1.8041
17 0.2924 0.9563 0.3057 62 0.8830 0.4695 1.8807
18 0.3090 0.9511 0.3249 63 0.8910 0.4540 1.9626
19 0.3256 0.9455 0.3443 64 0.8988 0.4384 2.0503
20 0.3420 0.9397 0.3640 65 0.9063 0.4226 2.1445
21 0.3584 0.9336 0.3839 66 0.9136 0.4067 2.2460
22 0.3746 0.9272 0.4040 67 0.9205 0.3907 2.3559
23 0.3907 0.9205 0.4245 68 0.9272 0.3746 2.4751
24 0.4067 0.9136 0.4452 69 0.9336 0.3584 2.6051
25 0.4226 0.9063 0.4663 70 0.9397 0.3420 2.7475
26 0.4384 0.8988 0.4877 71 0.9455 0.3256 2.9042
27 0.4540 0.8910 0.5095 72 0.9511 0.3090 3.0777
28 0.4695 0.8830 0.5317 73 0.9563 0.2924 3.2709
29 0.4848 0.8746 0.5543 74 0.9613 . 0.2756 3.4874
30 0.5000 0.8660 0.5774 75 0.9659 0.2588 3.7321
31 0.5150 0.8572 0.6009 76 0.9703 0.2419 4.0108
32 0.5299 0.8481 0.6249 77 0.9744 0.2250 4.3315
33 0.5446 0.8387 0.6494 78 0.9782 0.2079 4.7046
34 0.5592 0.8290 0.6745 79 0.9816 0.1908 5.1446
35 0.5736 0.8192 0.7002 80 0.9848 0.1736 5.6713
36 0.5878 0.8090 0.7265 81 0.9877 0.1564 6.3138
37 0.6018 0.7986 0.7536 82 0.9903 0.1392 7.1154
38 0.6157 0.7880 0.7813 83 0.9925 0.1219 8.1444
39 0.6293 0.7772 0.8098 84 0.9945 0.1045 9.5144
40 0.6428 0.7660 0.8391 85 0.9962 0.0872 11.4301
41 0.6561 0.7547 0.8693 86 0.9976 0.0698 14.3007
42 0.6691 0.7431 0.9004 87 0.9986 0.0523 19.0811
43 0.6820 0.7314 0.9325 88 0.9994 0.0349 28.6363
44 0.6947 0.7193 0.9657 89 0.9999 0.0175 57.2900
45 0.7071 0.7071 1.0000 90 1.0000 0.0000 00
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Clothoid Loops

When most people first view a looping roller coaster, they think that the loop is a
circle. This is a common misconception. These vertical loops follow a special shape called
a clothoid (also spelled klothoid). The clothoid loop
is actually a section of a cornu spiral. Cornu spirals
have applications in Fresnel diffraction problems
and in the design of highway exit ramps. Figure 31
shows the clothoid loop, which is a cornu spiral
section with its reflection, and resembles an upside-
down teardrop.

The design most commonly used in amusement
parks involves a typical linear approach to the bot-
tom of the loop, followed by a curve with a regularly
decreasing radius. With respect to a vertical line

bisecting the loop, the top *+65° approximates the = T
arc of a circle. Specifically, the curvature of the

clothoid is proportional to the arc length at any point

. Figure 31.
on the curve. That is to say, Clothoid Loop
1 s . .
= —5 where: a is some constant that determines
r a

the tightness of the curve,

r is the radius at the point in
question, and

s is the arc length
(see Figure 32).

Safety and passenger comfort are the primary reasons for use of the clothoid loop.
Normally in circular motion, if all other things are kept constant, as the radius reduces, the
tangential velocity increases. We assume there is no friction here. A classic example of this
is ice skaters or ballet dancers going into a tight pirouette, spinning faster as their arms and
legs are brought in and more slowly as they extend their extremities. But the situation with
the roller coaster is more complicated than that. As the roller coaster climbs, it loses kinetic
energy to potential energy and therefore reduces its velocity. If the loop were a circle, there
would be a constant centripetal acceleration as the coaster reduces its speed due to its change
in height. If a clothoid track is chosen, the centripetal acceleration increases as you go up
into the loop. So two things are at play here on the way up to the top of the loop: the increase
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Background Information for Selected Rides

AB is approximately linear
BC is a clothoid

CD is circular

OA height =16.3 m
6=15°

53

Figure 32.
Curvature of Clothoid

of speed due to the decreasing radius of the loop and the decrease of speed due to the
decrease of kinetic energy.

With this background, we only begin to understand the problem. We still have not
answered the question “Why not just use a circular track?” Most people begin to feel
uncomfortable at accelerations in excess of 3.5 g’s. Beyond 5 g’s, many people begin to
lose consciousness. From the amusement park’s point of view (and that of many passengers),
this is an undesired side effect! The derivation that follows shows that if a circular loop
were used, the minimum acceleration at the bottom of a circular loop would be in the range
of 6 g’s—not good. Fortunately, physics comes to the rescue. If we start with a curve that
is greater than what is needed, our change in velocity would be less. This leads to two
problems—enormous circles (not enough room and too expensive to build) and running out
of kinetic energy before reaching the top of the loop (thus, not going upside down). As the
speed falls due to climbing, we can counteract that by tightening the curvature of the circle.
Thus, decreasing speed due to the loss of kinetic energy (the climb) is countered with the
increase in velocity due to the reduced radius. The clothoid shape satisfies these conditions
so that there is enough energy to go over the top (upside down) with accelerations that rarely
exceed 3.7 g’s.

The descending trip is just the reverse of the ascending trip. As we increase our speed
due to falling, the curvature of the loop is increased so that the resulting acceleration when
hitting the bottom of the loop is within acceptable limits. In short, the change in speed due
to the change in radius of the curve is offset by the change in speed due to height.
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Investigating a frictionless circular loop of radius R with the condition that the train
remain on the track at the top of the loop, we find that the weight mg must be equal to the
centripetal force due to the circular motion:

2

Solving for the velocity at the top, we have:
V2(top) = Rg
The potential energy at the top of the circular loop is:
PE = mg2R,

since the diameter of the circle, or 2R, is the height climbed. The total energy at the top is
the gravitational potential energy due to height and the kinetic energy just moving the train
over the top. Hence:

mg2R + (V2)mgR = 2.5mgR

In a frictionless system, this must be equal to the potential energy of the original roller
coaster hill, height &, before entering the circular loop; hence:

mgh = 2.5mgR

Therefore, the minimum height of the starting hill that drops the roller coaster into the
circular loop must be 2.5R of the circular loop. Again, assuming a frictionless system, the

potential energy at the top of the starting hill must be equal to the kinetic energy at the
bottom of the loop:

mgh(top) = 25ng= (l/z)mvz(bottom)

Solving for v, we have:

2 —
4 (bottom) — SRg

Since the track must not only hold up the train’s weight (mg) but also keep the train moving
in circular motion (mvz(bouom)/R), the forces at the bottom must be:

2
F:ma:mg+ _’nv_%“l_

or:
m(5Rg)

ma = mg + R

= mg + Smg = 6mg

Simplifying, a = 6g at the bottom.
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This situation does not exist, since we have discounted the effects of friction. Two
ways tc solve this difficulty: either start from a greater height or catapult the train. This
would increase the accelerations at the bottom, entering the loop at an unacceptable range,
somewhat higher than 6 g’s. Again, this high speed, which results in a large acceleration
in a circular system, is necessary to keep the train from falling off at the top.

Thus the elegance of the clothoid loop. Due to its changing radius of curvature, smaller
accelerations are experienced at the bottom than if a circular track were used.



Dual-Axis Turning Rides

Dual-axis turning rides are particular cases of epicycle motion. The “Triumph of
Mechanics™ section in Project Physics has ar: excellent explanation of this coupled with fiim
loops on retrograde and epicycle motion.

In analyzing dual-axis turning rides a major source of confusion is choosing a poor
frame of reference. Another is unwittingly changing the frame of reference midway through
the solution of a problem.

In the frame of the earth:

R = length of center arm

r = length of cluster arm

1
o = angle rider makes at the H r P
center i

’

/

B = angle rider makes with R
cluster center /

/
and: Oy = do/dt 1A X
Weluster = dB/dt

(See Figure 33.) Figure 33.

The rider path is generated by the following equations:
X=Rcosa + rcosf
Y =Rsina + rsinf
The equations for velocity are:
Vy = dX/dr V, = dY/dt
The equations for acceleration are:
Ay = dVy/dt Ay = dV,/dt

The actual path of a rider may look as shown in Figure 34 (next page).

56
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/ Maximum acceleration, minimum velocity

Figure 34.
Path of Rider



12 Triangulation

Name: Date:

Triangulation Practice Problems

Note: Solve these problems either graphically or trigonometrically, or both, as directed by
your teacher.

1. The grand country of Gillikin built itself a fabulous new amusement park. During the
opening ceremony, Glinda the Good Witch announced that the new Ferris wheel was
the tallest structure in Gillikin. To break the boredom of the witch’s long-winded speech,
Dorothy, who was 1.3 m in length from her eye to the ground, and the Scarecrow
decided to measure the height of this new device. Earlier in the day, they had measured
the height of the tallest castle in Gillikin and found it (using a barometer) to be 10.3 m
tall. After setting a 12.0 m baseline, they measured the angle of elevation for the Ferris
wheel from the far end of the line to be 14° and from the near end, 19°. They gave
these data to Professor H. M. Wogglebug, T.E., for analysis. Was Glinda the Good’s
claim correct? Please support your answer.

2. The Cowardly Lion was talked into riding the Blue Munchkin Streak Roller Coaster
with Jack the Pumpkin Head. The Cowardly Lion could jump down safely from trees
that were 7.0 m tall. Being afraid of anything taller than a tree, the Lion asked the Tin
Woodsman to help him measure the height of the Blue Munchkin Streak. Jack measured
a 9.0 m baseline while the 1.6-m-tall Tin Woodsman measured the angles of elevation
at the ends of the baseline. He found them to be 8° and 10°. Would the Cowardly Lion
have enough courage for this new thrill machine? Please support your answer.

3. While traveling westward on the Road of Yellow Brick, Dorothy and her friends came
to the Munchkin River. The Tin Woodsman found the tallest tree around, which was
18 m high. He thought they might be able to use it as a bridge. While the Woodsman
was out in the forest, the rest of the gang surveyed the width of the river. After setting
up an 11 m baseline, they measured the angles from the ends of the baseline to a point
on the opposite shore. The angle from the north end of the baseline was 75°, while the
angle from the south end was 88°. Was the tree tall enough, or did they need to build
a raft? Please support your answer.
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Name: Date:

Horizontal Accelerometer and Spring Accelerometer
Practice Problems

1. Holy Smokes! While on the Rotor, the BB’s 0° = ﬁ:r ﬁ?
on my accelerometer deflected 76°. What is the ' :
measured acceleration? How many g’s is this? 76° '

]

2. While riding the outside horse on a merry-go- !
round, Batman’s horizontal accelerometer, !
when pointing toward the hub of the merry-go- .
round, indicated a reading of 11°. On the inside '
track, Robin’s accelerometer read 9°. Calculate 0°
the difference in accelerations. Why is there a Figure 26.

Problem 1

difference?

3. On the same merry-go-round as in Question 2, a 150 g mass is hanging from a spring
scale. The Masked Wonder’s scale reads a maximum value of 1.7 N when the horse
is going up and a minimum value of 1.3 N when the horse is going down. Using these
values, find the acceleration of the horse going up and going down. In which of these
is the magnitude of acceleration the greater?

4. The Joker was bouncing up and down on his pogo stick. At the top of his bounce, his
effective gravitational field was zero, while at the bottom of his bounce he measured
2.5 g. If his mass is 65 kg, what is his perceived weight at the top of his bounce, and
at the bottom?
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