Integrated Math 3 Chapter 6 Section 2 Study Guide and Intervention Solving Logarithmic Equations and Inequalities

Solving Logarithmic Equations

Property of Equality for Logarithmic Functions		If <i>b</i> is a positive number other than 1, then $\log_b x = \log_b y$ if and only if $x = y$.	
Example 1: Solve $\log_2 2x = 3$.			Example 2: Solve the equation $\log_{10} (r + 17) = \log_{10} (3r + 23)$
$\log_2 2x = 3$	Original ec	inal equation hition of logarithm	Since the bases of the logarithms are equal, $(x + 17)$ must equal $(3x + 23)$.
$2x = 2^3$ 2x = 8	Definition		
2x = 8	Simplify.		(x + 17) = (3x + 23)
x - 4	Simpiny.		-6 = 2x
	- 4.		<i>x</i> = -3
Exercises			
Solve each equat	ion.		
1. $\log_2 32 = 3x$			2. $\log_3 2c = -2$
3. $\log_{2x} 16 = -2$			4. $\log_{25}\left(\frac{x}{2}\right) = \frac{1}{2}$
5. $\log_4 (5x + 1) =$	= 2		6. $\log_8 (x-5) = \frac{2}{3}$
7. $\log_4 (3x - 1) = \log_4 (2x + 3)$			8. $\log_2 (x^2 - 6) = \log_2 (2x + 2)$
9. $\log_x + \log_4 27 = 3$			10. $\log_2 (x+3) = 4$
11. $\log_x 1000 = 3$			12. $\log_8 (4x + 4) = 2$
13. $\log_2 x = \log_2 12$			14. $\log_3 (x-5) = \log_3 13$
15. $\log_{10} x = \log_{10} x$	(5x - 20)		16. $\log_5 x = \log_5 (2x - 1)$
17. $\log_4 (x + 12) = \log_4 4x$			18. $\log_6 (x-3) = \log_6 2x$

Integrated Math 3 Chapter 6 Section 2 Study Guide and Intervention (continued) Solving Logarithmic Equations and Inequalities

Solving Logarithmic Inequalities

	If $b > 1$, $x > 0$, and $\log_b x > y$, then $x > b^y$.
Property of Inequality for	If $b > 1$, $x > 0$, and $\log_b x < y$, then $0 < x < b^y$.
Logarithmic Functions	If $b > 1$, then $\log_b x > \log_b y$ if and only if $x > y$,
	and $\log_b x < \log_b y$ if and only if $x < y$.

Example 1: Solve $\log_5 (4x - 3) < 3$.

$\log_5 (4x - 3) < 3$	Original equation			
$0 < 4x - 3 < 5^3$	Property of Inequality			
3 < 4x < 125 + 3	Simplify.			
$\frac{3}{4} < x < 32$	Simplify.			
The solution set is $\left\{ x \mid \frac{3}{4} < x < 32 \right\}$.				

Example 2: Solve the inequality $\log_3 (3x-4) < \log_3 (x+1).$

Since the base of the logarithms are equal to or greater than 1, 3x - 4 < x + 1. 2x < 5 $x < \frac{5}{2}$ Since 3x - 4 and x + 1 must both be positive numbers, solve 3x - 4 = 0 for the lower bound of the inequality. The solution is $\left\{ x \mid \frac{4}{3} < x < \frac{5}{2} \right\}$.

Exercises

Solve each inequality.

1. $\log_2 2x > 2$	2. $\log_5 x > 2$

3. $\log_2 (3x+1) < 4$

5. $\log_3 (x + 3) < 3$

7. $\log_{10} 5x < \log_{10} 30$

9. $\log_{10} 3x < \log_{10} (7x - 8)$

11. $\log_{10} (3x + 7) < \log_{10} (7x - 3)$

4. $\log_4 2x > -\frac{1}{2}$

6. $\log_{27} 6x > \frac{2}{3}$

8. $\log_{10} x < \log_{10} (2x - 4)$

10. $\log_2(8x+5) > \log_2(9x-18)$

12. $\log_2 (3x - 4) < \log_2 (2x + 7)$