Radical Functions

For radical functions we will use the equation $f_{(x)} = a\sqrt{x-h} + k$ to denote the standard form of the equation. Be aware, that the variable x may have a coefficient from time to time. Follow the standard procedure to find the x and y intercepts of any radical function. Set the x or y equal to zero, depending on which one you wish to find, and solve for the remaining variable. Finding the domain of a radical function is a little tricky. To find the domain of any radical function with an even index, set the radicand greater that or equal to zero (\geq) and solve. If the radicand is a polynomial, you will need to solve the polynomial inequality by finding critical points, and testing intervals. To find the range of the radical function, find y value of the point of origin, and use the constant a to determine the range of the function.

Given the radical function $f_{(x)} = -\sqrt{x+4} - 3$, the following can be determined.

First find the domain of the function. This will give you the x value needed for the point of origin.

$$f_{(x)} = -\sqrt{x+4} - 3$$

Finding the domain. $x+4 \ge 0$

 $x \ge -4$

Since the constant a is -1, the function will go

downwards. Meaning that the range is $(-\infty, -3]$.

Finding the range.

You can see the domain of the function is $[-4, \infty)$. The -4 is the x value the point of origin.

Finding the "point of origin" of a radical function.

To find the point of origin of a radical function use the rules discussed in previous sections. The point of origin for the parent function $y = \sqrt{x}$ is (0, 0). This particular graph will shift left 4 and down 3, so the point of origin is (-4, -3). Be careful when using these rules. Make sure to find the domain of the function before you

attempt to find the point of origin. Consider a function such as $y = \sqrt{3-x}$. Since there is a positive 3 inside the radicand, you would normally shift to the left 3. However, If you were to find the domain of this function by setting the radicand ≥ 0 , You will find the domain is actually $x \le 3$. This says the graph is shifting to the right 3 spaces.

Substitute 0 for y and solve for x.

$$0 = -\sqrt{x+4} - 3$$

$$\sqrt{x+4} = -3$$

Finding the y-intercept.

Substitute 0 for x and solve for y.

$$y = -\sqrt{(0) + 4} - 3$$

$$y = -\sqrt{4} - 3$$

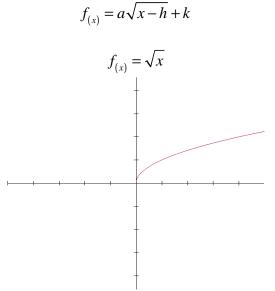
$$y = -2 - 3$$

$$y = -5$$

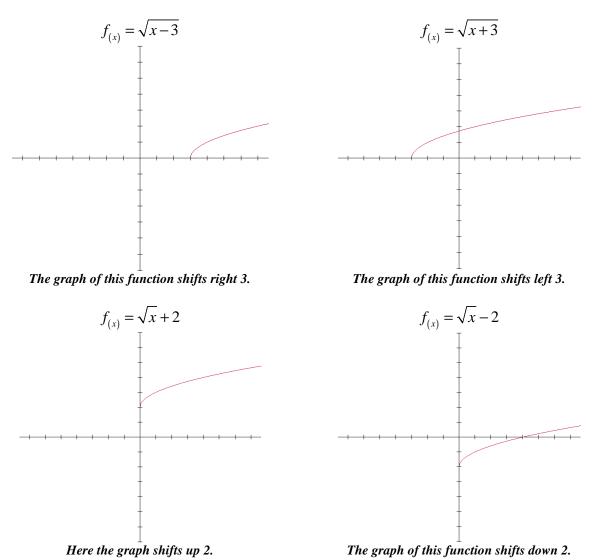
This is not possible. That means there is no x intercept for this function.

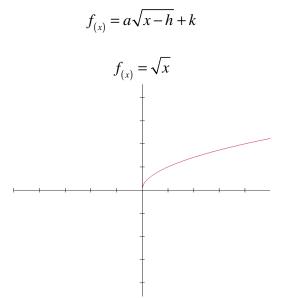
The y intercept of this function is (0, -5).

We will now look at the parent function, and some translations of it.

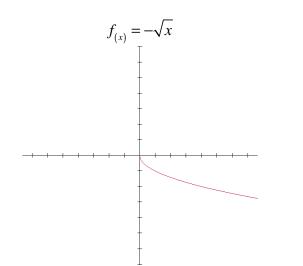


The parent function has the point of origin at (0, 0)

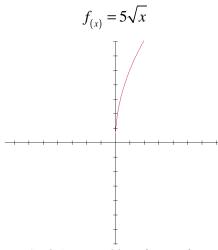


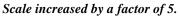


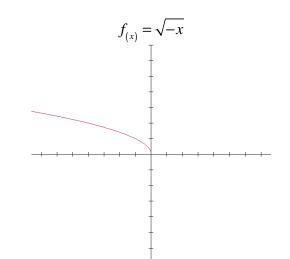
The parent function has the point of origin at (0, 0)



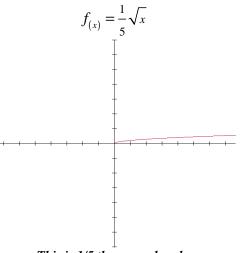
The graph of this function flips upside down.

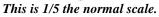






The graph of this function \hat{f} lips from right to left as the -x affects the domain of the function.





Find the domain of each of the following radical functions in interval notation.

A)
$$f_{(x)} = \sqrt{x+4} - 2$$
 B) $f_{(x)} = 2\sqrt{4-x} + 1$ **C)** $f_{(x)} = \sqrt{2x+3} + 1$

D)
$$f_{(x)} = \sqrt{x^2 - 4}$$
 E) $f_{(x)} = \sqrt{x^2}$ **F**) $f_{(x)} = \frac{1}{2}\sqrt{6 - x} - 3$

G)
$$f_{(x)} = -\sqrt{x+5} - 8$$
 H) $f_{(x)} = \sqrt{2-x} + 1$ **I**) $f_{(x)} = 2\sqrt{x+7} - 5$

The range of a radical function in $f_{(x)} = a\sqrt{x-h} + k$ form can be found using the value of the "a" term, and the y value of the point of origin.

If a > 0, the range of the function is $[k, \infty)$. If a < 0, the range of the function is $(-\infty, k]$.

Find the range for each of the following.

A)
$$f_{(x)} = \sqrt{x+5} - 3$$
 B) $f_{(x)} = -\sqrt{x-3} + 2$ **C)** $f_{(x)} = 2\sqrt{x-4} + 3$

D)
$$f_{(x)} = -3\sqrt{5-x} + 6$$
 E) $f_{(x)} = \sqrt{4-x} - 3$ **F**) $f_{(x)} = \sqrt{x-7} + 5$

Find the point of origin for each of the following radical functions.

A)
$$f_{(x)} = \sqrt{x+4} - 2$$
 B) $f_{(x)} = 2\sqrt{4-x} + 1$ **C)** $f_{(x)} = \sqrt{x} - 4$

D)
$$f_{(x)} = -\sqrt{x-3}$$
 E) $f_{(x)} = \sqrt{x^2}$ **F**) $f_{(x)} = \frac{1}{2}\sqrt{6-x}-3$

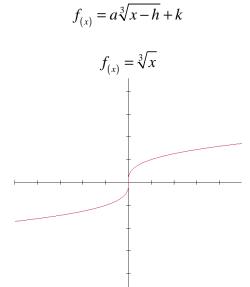
G)
$$f_{(x)} = -\sqrt{x+5} - 8$$
 H) $f_{(x)} = \sqrt{2-x} + 1$ **I**) $f_{(x)} = 2\sqrt{x+7} - 5$

Why is the graph of the function $f_{(x)} = \sqrt{-x}$ moving towards the left rather than the right?

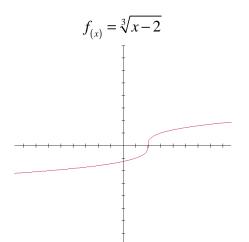
Explain why the graph of the function $f_{(x)} = \sqrt{x^2}$ is identical to that of $f_{(x)} = |x|$.

To find the domain of a radical function that has an even index, why do you need to set the radicand ≥ 0 ?

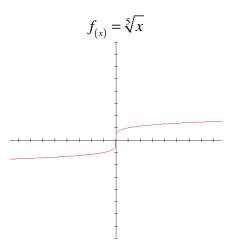
We will now look at the cube root function.

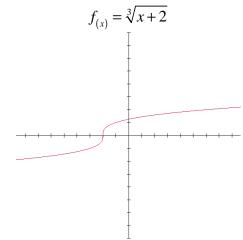


The parent function has the point of origin at (0, 0)



The graph of this function shifts right 2.



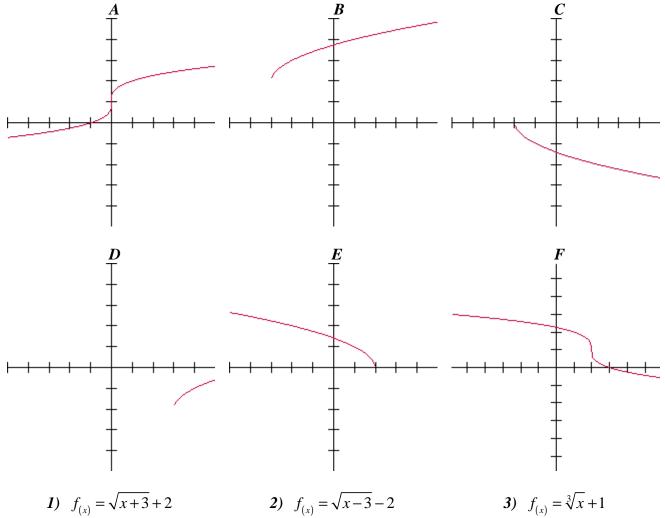


The graph of this function shifts left 2.

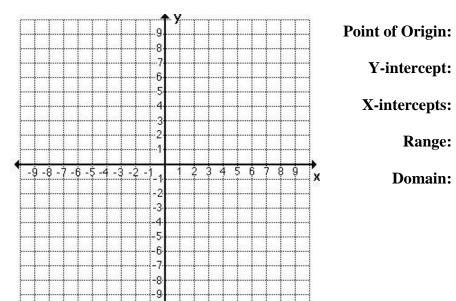
As you can see on the left, the curve is just about the same for a 5th root, verses a cubed root. This will be the same case for any radical function where the index is odd. This also means that any radical function where the index is even will look like a normal square root function. The curves of these functions are a little "flatter" than a regular square root or cubed root.

Vertical translations of the function are identical to that of a regular square root function. As you can see, the domain and range of any radical function with an odd index is all real numbers.

Match the appropriate graph with its equation below. Explain why each of your solutions is true.



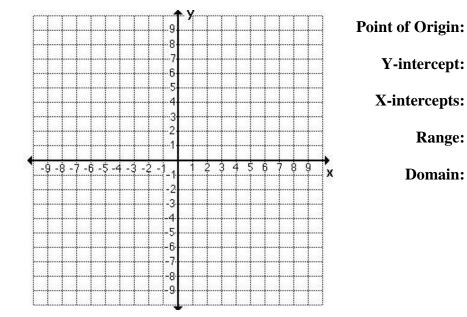
4)
$$f_{(x)} = -\sqrt[3]{x-2} + 1$$
 5) $f_{(x)} = -\sqrt{x+2}$ **6)** $f_{(x)} = \sqrt{2-x}$



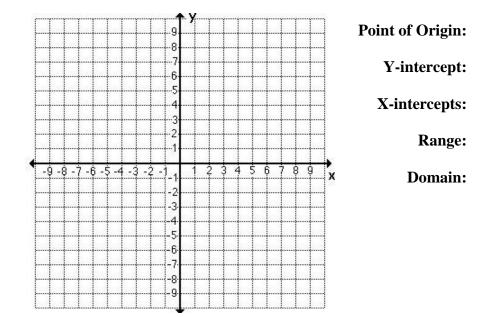
Graph each of the following radical functions. *Find all required information.*

A)
$$f_{(x)} = \sqrt{x-3} + 2$$

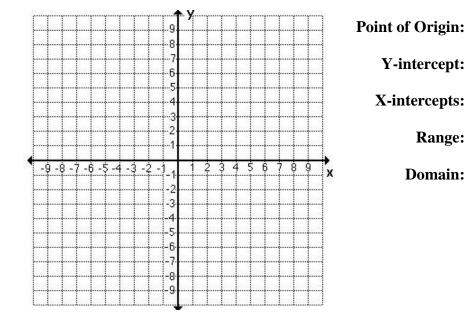
B)
$$f_{(x)} = -\sqrt{x-3} + 1$$

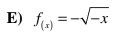


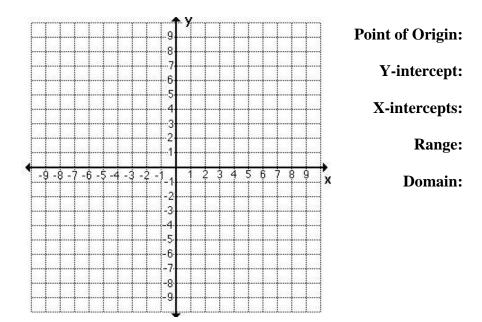
C)
$$f_{(x)} = \sqrt{3-x} + 1$$



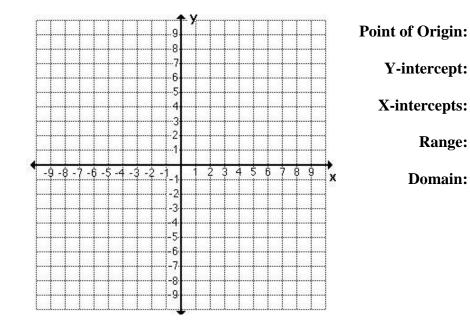
D)
$$f_{(x)} = 2\sqrt{x} - 4$$

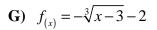


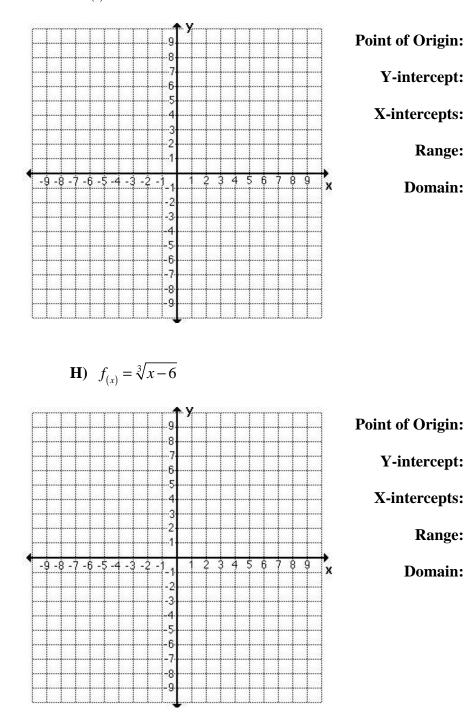




F)
$$f_{(x)} = \sqrt[3]{x+2} + 3$$







Why are the graphs of $y = \sqrt[3]{x}$ and $y = -\sqrt[3]{-x}$ identical?