Chapter 1

1.5 More on Slope

Functions and Graphs

1/21

Chapter ?

1.5 p200 2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 29, 30, 32, 46, 48

Homework

2/21

Objectives

Find slopes and equations of parallel and perpendicular lines. Interpret slope as rate of change. Find a function's average rate of change.

Chapter 1

Parallel and Perpendicular Lines

By examining slopes, you can determine if lines are parallel or perpendicular.

Using that information you can also write equations of lines that meet certain criteria.

Slope and Parallel Lines

- 1. If two non-vertical lines are parallel, then they have the same slope.
- 2. If two distinct non-vertical lines have the same slope, then they are parallel.
- 3. Two distinct vertical lines, both with undefined slopes, are parallel.
 - Write an equation of the line passing through (-2, 5) and parallel to the line whose equation is y = 3x + 1.
 - The slope of the line y = 3x + 1 is 3. A parallel line will also have slope of 3. In point-slope form, the equation of the new line is

$$y - 5 = 3(x - -2)$$

v - 5 = 3(x + 2)

Slope and Perpendicular Lines

1. If two non-vertical lines are perpendicular, then the product of their slopes is -1 (opposite reciprocal).

2. If the product of slopes of two lines is -1, then the lines are perpendicular.

2. A horizontal line having zero slope is perpendicular to a vertical line having undefined slope.

Example: Writing Equations of a Line

Find the slope of any line that is perpendicular to the line whose equation is x + 3y - 12 = 0.

First we must determine the slope of the line. There are a few ways to find the slope from an equation, but perhaps the most common is to put the equation in slope-intercept form.

<i>X</i> + 3 <i>y</i> - 12 = 0	Th
3y = -x + 12	to
$y = -\frac{1}{3}x + 4$	
The slope of our $\frac{1}{1}$	

- he slope of any line perpendicular the our original line is 3.

$$-\frac{1}{3} \cdot 3 = -1$$

Parallel and Perpendicular Lines

$m_1 \bullet m_2 = -1$

$m_1 = m_2$

Slope as Rate of Change

Slope is defined as the ratio of the change in y to a corresponding change in x.

 $m = \frac{\Delta y}{\Delta x} = \frac{\Delta f(x)}{\Delta x}$

\mathbf{A} The slope of a linear function describes how fast y (or f(x)) is changing with respect to x.

For a linear function, slope may be interpreted as the rate of change of the dependent variable per unit change in the independent variable.

Secant Line

If the graph of a function is not a straight line, the average rate of change between any two points is the slope of the line containing the two points. This line is called a secant line.

The Average Rate of Change of a Function

Let $(x_1, f(x_1))$ and $(x_2, f(x_2))$ be distinct points on the graph of a function f. The average rate of change of f from x_1 to x_2 is:

The Average Rate of Change of a Function

\blacksquare The slope of the secant line between the points (1,3.83) and (5,7.83) is:

$$\frac{\Delta \mathbf{y}}{\Delta \mathbf{X}} = \frac{f(\mathbf{x}_2) - f(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_1}$$

$$=\frac{7.83-3.83}{5-1}=\frac{4}{4}=1$$

12/21

The Average Rate of Change of a Function

\checkmark The slope of the secant line between the points (1,3.83) and (4,7.34) is

Continuation of same problem

$$\frac{\Delta \mathbf{y}}{\Delta \mathbf{X}} = \frac{f(\mathbf{x}_2) - f(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_1}$$

$=\frac{7.34-3.83}{4-1}=\frac{3.51}{3}=1.17$

Average Slope

\blacksquare The slope of the secant line between the points (1,3.83) and (4,7.34) is

Continuation of same problem

$=\frac{6.5-3.83}{3-1}=\frac{2.67}{2}=1.34$

Average Slope

Let us look at the 3 cases together

Notice how the secant slope changes depending upon the points that you choose because this function is a curve, not a line. So the average rate of change varies depending upon which points you may choose.

Continuation of same problem

X	f(x)	Slope of the secant line
3	6.5	1.34
4	7.34	1.17
5	7.83	

Average Rate of Change

- Suppose we move a little bit along a function from one x value to some new value that is the original x plus an amount h (to x + h).
- The average rate of change from $x_1 = x$ to $x_2 = x + h$ is:

$$\frac{\Delta \mathbf{y}}{\Delta \mathbf{X}} = \frac{f(\mathbf{x}_2) - f(\mathbf{x}_1)}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{f(\mathbf{x} + h)}{\mathbf{x} + h}$$

This is the difference quotient we briefly met in an earlier section.

The difference quotient gives the average rate of change of a function from x to x + h. In the difference quotient, the value h is usually small (a number very close to 0). In this way the average rate of change can be found for a very short interval.

Difference Quotient

 $=\frac{f(x_{2})-f(x_{1})}{X_{2}-X_{1}}$ $\Delta oldsymbol{\mathcal{Y}}$ ΔX f(x+h)-f(x)

The difference quotient is an average rate of change and becomes very important in higher levels of math.

Finding the Average Rate of Change

 \therefore Find the average rate of change for f(x) = x³ from x₁ = -2 to x₂ = 0.

The average rate of change for $f(x) = x^3$ from $x_1 = -2$ to $x_2 = 0$ is 4 units of change in y for every unit of change in x.

18/21

Average Velocity of an Object

Suppose that a function expresses an objects's position, s(t), in terms of time. t. The average velocity of the object from t_1 to t_2 is:

Example: Finding Average Velocity

- \mathbf{A} The distance, s(t), in feet, traveled by a ball rolling down a ramp is given by the function $s(t) = 4t^2$, where t is the time, in seconds, after the ball is released.
 - The ball starts slowly and accelerates as it moves down the ramp.
 - Find the ball's average velocity from $t_1 = 1$ second to $t_2 = 2$ seconds.

$$\Delta \boldsymbol{V} = \frac{\Delta \boldsymbol{S}}{\Delta \boldsymbol{f}} = \frac{\boldsymbol{S}(\boldsymbol{f}_2) - \boldsymbol{S}(\boldsymbol{f}_1)}{\boldsymbol{f}_2 - \boldsymbol{f}_1} = \frac{\boldsymbol{S}(\boldsymbol{2}) - \boldsymbol{S}(\boldsymbol{1})}{\boldsymbol{2} - \boldsymbol{1}}$$

The ball's average velocity between 1 and 2 seconds is 12 ft/sec.

- $\frac{1}{1} = \frac{4(2^2) 4(1^2)}{1} = \frac{16ft 4ft}{1sec}$

Example: Finding Average Velocity

 \mathbf{A} The distance, s(t), in feet, traveled by a ball rolling down a ramp is given by the function $s(t) = 4t^2$, where t is the time, in seconds, after the ball is released.

Find the ball's average velocity from $t_1 = 1$ sec to $t_2 = 1.5$ sec.

$$\Delta \mathbf{V} = \frac{\Delta S}{\Delta t} = \frac{S(t_2) - S(t_1)}{t_2 - t_1} = \frac{S(1.5) - S(t_1)}{1.5 - S(t_1)} = \frac{S(1.5) - S(t_1)}{1.5 - S(t_1)} = \frac{9ft - 4ft_1}{1.5 - S(t_1)}$$

The ball's average velocity between 1 and 1.5 seconds is 10 ft/sec.

- -s(1) $4(1.5^2) 4(1^2)$
- .5 10*ft* **5***ft* .5 sec 1 sec

