

Conics - Chapter 10

10.4 Syperbola

10.4 Somework

pg 760 7, 9, 13, 15, 21, 23, 25, 27, 31, 35

Conics - Chapter 10

Cocate a hyperbola's vertices and foci. Write equations of hyperbolas in standard form. Graph hyperbolas centered at the origin. Graph hyperbolas not centered at the origin. Solve applied problems involving hyperbolas.

Objectives:

What would happen if you pulled the two foci of an ellipse so far apart that they moved outside the ellipse? The result would be a hyperbola, another conic section.

Superpola

A <u>hyperbola</u> is a set of points P(x, y) in a plane such that the difference of the distances from P to fixed points F_1 and F_2 , the foci, is constant. For a hyperbola, $d = |PF_1 - PF_2|$, where d is the constant difference. You can use the distance formula to find the equation of a hyperbola.

A hyperbola contains two symmetrical parts called **branches**.

 $d = |PF_1 - PF_2| = constant for all points P$

Suber Dolu

A hyperbola has two axes of symmetry. The <u>transverse axis</u> of symmetry contains the vertices and, if it were extended, the foci of the hyperbola. The <u>vertices</u> of a hyperbola are the endpoints of the transverse axis.

Syperbola

The conjugate axis of symmetry separates the two branches of the hyperbola. The <u>co-vertices</u> of a hyperbola are the endpoints of the conjugate axis.

Stiberbold

All together now.

The transverse axis is not always longer than the conjugate axis.

The eccentricity is $e = \frac{c}{a} > 1$. Also, the larger the aeccentricity is, the closer the branches of the hyperbola are to being lines.

Sceentricity

The standard form of the equation of a hyperbola depends on whether the hyperbola's transverse axis is horizontal or vertical.

The vertices are a units from the center and the foci are c units from the center.

The values a, b, and c, are related by the equation $c^2 = a^2 + b^2$. Also note that the length of the transverse axis is 2a and the length of the conjugate is 2b.

Standard Form for the Equation of a Hyperbola (Center at (0, 0)			
TRANSVERSE AXIS	HORIZONTAL	VERTICAL	
Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$	
Vertices	(<mark>a</mark> , 0), (- <mark>a</mark> , 0)	(0, <mark>a</mark>), (0, <i>–</i> a)	
Foci	(c , 0), (- c , 0)	(0, c), (0, − c)	
Co-vertices	(0, b), (0, - b)	(b , 0), (- b , 0)	
Asymptotes	$y = \pm \frac{b}{a}x$	$y = \pm \frac{a}{b}x$	

- We have yet to mention the final piece of the puzzle that is graphing a hyperbola.
- Each hyperbola has two asymptotes that intersect at the center of the hyperbola.
- A hyperbola with a horizontal transverse axis, the equations of the asymptotes are ...

A hyperbola with a vertical transverse a the equations of the asymptotes are ...

<u>Symptotes</u>

$$y = \frac{b}{a}x$$

$$y = \frac{a}{b}x$$

Standard Form of the Equation of Hyperbola, center (0, 0)

Horizontal

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$$

$$y = \pm \frac{b}{a}x$$

Syperbola at (0,0)

Vertical

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

$$y = \pm \frac{a}{b}x$$

Syperbola at (0,0)

Syperbola at (0,0)

Write an equation in standard form for the hyperbola.

- Step 1 Identify the form of the equation.
 - The graph opens horizontally, so the equation will be in the form of $\frac{\chi^2}{r^2} - \frac{\gamma^2}{h^2} = 1$
- Step 2 Identify the center and the vertices.
 - Center (0, 0), vertices $(\pm 6, 0)$ and, co-vertices $(0, \pm 6)$. So a = 6, and b = 6.

Step 3 Because a = 6 and b = 6, the equation of the graph is $\frac{x^2}{6^2} - \frac{y^2}{6^2} = 1$ or $\frac{x^2}{36} - \frac{y^2}{36} = 1$

Graphing a Syperbola center (0,0)

- The steps to graphing a hyperbola are as follows:
 - 1. Determine the orientation of the hyperbola.
 - 2. Find the vertices and co-vertices.
 - Using the vertices and co-vertices draw a rectangle centered at the origin, parallel to axes, with intercepts ±a, and ±b.
 - 4. Draw dashed lines through corners of rectangle as asymptotes.
 - Draw branches of hyperbola through vertices and approaching asymptotes.

Step 1 The equation is in the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ so the transverse axis is horizontal with center (0, 0).

Step 2 $a^2 = 25$, and $b^2 = 16$, a = 5 and b = 4, the vertices are (±5, 0) and the co-vertices are (0, ±4)

Step 3 The equations of the asymptotes are $y = \pm \frac{4}{5}x$

Find the vertices, foci, asymptotes and graph the hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$

 $c^{2} = a^{2} + b^{2} = 5^{2} + 4^{2} = 41$ $c = \sqrt{41}$ foci: $(\pm\sqrt{41}, 0)$

- Find the vertices, foci, asymptotes and graph the hyperbola $\frac{x^2}{25} \frac{y^2}{16} = 1$ the vertices are $(\pm 5, 0)$ and the co-vertices are $(0, \pm 4)$
 - Step 4 Draw a box by using the vertices and co-vertices. Draw the asymptotes through the corners of the box.
 - Step 5 Draw the hyperbola by using the vertices and the asymptotes.

Step 1 The equation is in the form $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ so the transverse axis is vertical with center (0, 0).

Step 2 $a^2 = 25$, and $b^2 = 16$, a = 5 and b = 4,

Step 3 The equations of the asymptotes are $y = \pm \frac{5}{4}x$

- Find the vertices, foci, asymptotes and graph the hyperbola $\frac{y^2}{25} \frac{x^2}{16} = 1$

 - the vertices are $(0, \pm 5)$ co-vertices are $(\pm 4, 0)$.

 - $c^{2} = a^{2} + b^{2} = 5^{2} + 4^{2} = 41$ $c = \sqrt{41}$ foci: $(0, \pm\sqrt{41})$

- Find the vertices, foci, asymptotes and graph the hyperbola $\frac{y^2}{25} \frac{x^2}{16} = 1$
 - the vertices are $(0, \pm 5)$ $y = \pm \frac{5}{4}x$ foci: $(0, \pm \sqrt{41})$ co-vertices are $(\pm 4, 0)$.
- **Step 4** Draw a box by using the vertices and co-vertices. Draw the asymptotes through the corners of the box.
- **Step 5** Draw the hyperbola by using the vertices and the asymptotes.

- Find the standard form of the equation of a hyperbola with foci at (0, -5) and (0, 5) and vertices (0, -3) and (0, 3). Because the foci are located at (0, -5) and (0, 5), the transverse axis lies on the y-axis. Thus, the form of the equation is $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$
- The distance from the center to either vertex is 3, so a = 3.
- The distance from the center to either foci is 5, so c = 5.
- **b**² = **c**² **a**² = **5**² **3**² = **16**, **b**= **4** The co-vertices are (0, -4) and (0, 4)
- The equation is $\frac{y^2}{5^2} \frac{x^2}{4^2} = 1$ or $\frac{y^2}{25} \frac{x^2}{16} = 1$

As with all conics, hyperbolas do not have to be centered at the origin.

Standard Form of the Equation of Hyperbola, Center (h, k)

Horizontal

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

$$y - k = \pm \frac{b}{a}(x - h)$$

Recognize the form?

Standard Form of Syperbola, center (h,k)

Vertical

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

$$y - k = \pm \frac{a}{b}(x - h)$$

Syperbola at (h,k)

Equation	Center	Transverse Axis
$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Vertices are <i>a</i> units right and <i>a</i> units left of center. Foci are <i>c</i> units right and <i>c</i> units left of center, where $c^2 = a^2 + b^2$.	(h, k)	Parallel to the <i>x</i> -axis; horizontal

Syperbola at (h,k)

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$
(h, k)
Vertices are a units above
and a units below the center.

Foci are c units above and c units below the center, where $c^2 = a^2 + b^2$. Parallel to the y-axis; vertical

perbola at (h,k)

- Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, and then graph. $\frac{(x-3)^2}{9} - \frac{(y+5)^2}{49} = 1$
- Step 1 The equation is in the form y is horizontal with C(3, -5).
- Step 2 Since a = 3 and b = 7,
- Step 3 The equations of the asymptot
 - $c^2 = a^2 + b^2 = 9 + 49 = 58$ C

$$k = \pm \frac{b}{a}(x - h)$$
, the transverse axis

the vertices are (0, -5) and (6, -5), the co-vertices are (3, -12) and (3, 2).

es are
$$y + 5 = \pm \frac{7}{3}(x - 3)$$

=
$$\sqrt{58}$$
 foci: $(3 \pm \sqrt{58}, -5)$

Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, and then graph. $\frac{(x-3)^2}{9} - \frac{(y+5)^2}{49} = 1$ $y+5 = \pm \frac{7}{3}(x-3)$

the vertices are (0, -5) and (6, -5), the co-vertices are (3, -12) and (3, 2).

- **Step 4** Draw a box by using the vertices and co-vertices. Draw the asymptotes through the corners of the box.
- **Step 5** Draw the hyperbola by using the vertices and the asymptotes.

$y + 5 = \pm \frac{7}{2}(x - 3)$ foci: (3 <u>± √58</u>,

Find the vertices, co-vertices, foci, and asymptotes of each hyperbola, and then graph. $\frac{(y+5)^2}{1} - \frac{(x-1)^2}{9} = 1$ **Step 1** The equation is in the form $\frac{(y+z)}{1^2}$

axis is vertical with C(1, -5).

the vertices are Step 2 a = 1, b = 3 the co-vertices

Step 3 The equations of the asymptotes

 $c^2 = a^2 + b^2 = 1 + 9 = 10$ $c = \sqrt{10}$

$$\frac{5)^2}{3^2} - \frac{(x-1)^2}{3^2} = 1$$
 so the transverse

e (1, -4) and (1, -6) and
are (4, -5) and (-2, -5).
s are
$$y + 5 = \pm \frac{1}{2}(x - 1)$$

foci:
$$(1, -5 \pm \sqrt{10})$$

Find the vertices, co-vertices, foci, and asymptotes of each hyperbola, and then graph.

the vertices are (1, -4) and (1, -6) and the co-vertices are (4, -5) and (-2, -5).

Step 4 Draw a box by using the vertices and co-vertices. Draw the asymptotes through the corners of the box.

Step 5 Draw the hyperbola by using the vertices and the asymptotes.

Note the changes when the center is translated.

Parameter	Tran
h	Translates the graph
	<i>h</i> < 0
k	Translates the graph
	<i>k</i> < 0
a	Stretches the graph
	transverse axis; as a
	farther apart.
	Stretches the graph
b	conjugate axis; as b
	move farther apart.

nsformation

left for h > 0 and right for

up for k > 0 and down for

in the direction of the increases, the vertices move

in the direction of the increases, the co-vertices

Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, then graph $9x^2 - 54x - 16y^2 - 64y - 127$ The transverse axis is horizontal with C(3,-2). $\frac{(x-3)^2}{16} - \frac{(y+2)^2}{9} = 1$ The center is (3, -2)The vertices are $(3\pm 4, -2)$ The co-vertices are $(3, -2\pm 3)$ $c^2 = a^2 + b^2 = 16 + 9 = 25$ c = 5 The foci are $(3\pm 5, -2)$ The asymptotes are $y + 2 = \pm \frac{3}{4}(x - 3)$

Find the vertices, co-vertices, foci, and asymptotes of the hyperbola, then graph $49y^2 - 4x^2 - 294y - 48x + 111 = 0$ **Step 1** Write in standard form by completing the square. $49y^2 - 4x^2 - 294y - 48x + 111 = 0$ $49y^2 - 294y - 4x^2 - 48x = -111$ $49y^2 - 294y + -4x^2 - 48x + = -111 + +$ $49(y^2 - 6y + 2) - 4(x^2 + 12x + 2) = -111 + 2 + 2$ $49(y-3)^2 - 4(x+6)^2 = 196$ $\frac{(y-3)^2}{4} - \frac{(x+6)^2}{49} = 1$

An explosion is recorded by two microphones that are 2 miles apart. Microphone M_1 receives the sound 3 seconds before microphone M_2 .

Assuming sound travels at 1100 feet per second, determine the possible locations of the explosion relative to the location of the microphones.

We begin by putting the microphones in a coordinate system.

Application

- We know that M_1 received the sound 3 seconds before M_2 . Since sound travels at 1100 feet per second, the difference between the distance from P to M_1 and the distance from P to M_2 is 3300 feet.
- The set of all points P (or locations of the explosion) satisfying these conditions fits the definition of a hyperbola, with microphones M_1 and M_2 at the foci.

Application

- We will use the standard form of the hyperbola's equation. P(x, y), the explosion point, lies on this hyperbola. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
- The differences between the distances is 3300 feet (3 sec). Thus, 2a = 3300 and a = 1650.
- The distance from the center to each focus is 5280 ft (1 mi). Thus c = 5280.
- $b^2 = c^2 a^2 = 5280^2 1650^2 = 25155900$
- $\frac{x^2}{2722500} \frac{y^2}{25155900} = 1$

Application

branch of this hyperbola closest to M_1 . 38/39

General Equations for Conics

The graph of Ax^2 + Cy^2 + Dx + Ey + F = 0 is A circle ... when A = C A para An ellipse ... when AC > 0 A hype

Identify

- $4x^2 + 5y^2 9x + 8y = 0$ ellipse
- $2x^2 5x + 7y 8 = 0$ parabol
- $7x^2 + 7y^2 9x + 8y 16 = 0$
- $4x^2 5y^2 x + 8y + 1 = 0$ hyperbola (AC < 0)

A parabola ... when AC = 0A hyperbola ... when AC < 0

ellipse (AC = 20) parabola (AC = 0) circle (A = C)