<u>Chapter</u>

Polynomial and Rational Functions

24 Complex Numbers

Chapter 2

Homework

<u>2.4</u> pl 67 3, 13, 15, 21, 25, 33, 35, 47, 53, 55, 59, 61, 63, 71, 81, 86

Objectives:

Use the imaginary unit I to write complex numbers.
Add and subtract complex numbers.
Multiply complex numbers.
Divide complex numbers.
Perform operations with square roots of negative numbers.
Solve quadratic equations with complex imaginary solutions.

Complex and Imaginary Numbers

The imaginary unit, i, is defined as $i = \sqrt{-1}$

The set of all numbers in the form is called the set of complex numbers.

The standard form of a complex number is **a + bi**

Imaginary parts with the second secon are equal.

a + bi = c + di iff a = c and b = d

where $i^2 = -1$

a + bi eal numbers a, b, and i, the imaginary unit,

Real and Imaginary Numbers

- M The set of all complex numbers is in the form
 - The set of all real numbers have the form
 - Thus a is called the real part of a + bi.
 - The set of pure imaginary numbers have the form 0 + biThus b is called the imaginary part of a + bi.
 - **I** Note that the additive identity of the complex numbers is zero, 0 + 0 = 0.
 - Additionally, the additive inverse of a + bis -(a + bi) = -a bis.

Operations on Complex Numbers

- In the form of a complex number a + bi is like the binomial a + bx. To add, subtract, and multiply complex numbers, we use the same methods that we use for binomials.
- In add two complex numbers, we add the two real parts and then add the two imaginary parts. That is, (a + bi) + (c + di) = (a + c) + (b + d)i.
 - a. (5-2i)+(3+3i)Associative Property of Addition = 5 + (-2i + 3) + 3i= 5 + (3 + -2i) + 3i**Commutative Property of Addition** Associative Property of Addition =(5+3)+(-2i+3i)**Distributive Property** = **8** + (-2 + 3)*i*
 - = **8** + *i*

Example: Subtracting Complex Numbers

Perform the indicated operations, writing the result in standard form:

- a.(2-6i)-(12-i)=(2-6i)+(-12+i)=(2+-12)+(-6i+i)

- = -10 5i

Example: Multiplying Complex Numbers

Perform the indicated operations, writing the result in standard form:

a. 7i(2-9i) $=14i-63i^{2}$ = 14i - 63(-1)= 63 + 14i

- b.(5+4i)(6-7i)
 - = 5(6 7i) + 4i(6 7i)
 - = **30 35***i* + **24***i* **28***i*²
 - =30-11i-28(-1)
 - =30-11i+28

= 58 - 11/

The F## Word

Bo NOT let me hear anyone use the "F" Word in my classroom.

When we multiply two binomials, or any two polynomials, ...

WE USE THE DISTRIBUTIVE PROPERTY

We, most assuredly, most emphatically, 10 NOT use the F **L Method, which is not a "method", but simply a mnemonic device for the mathematically challenged.

Powers of Complex Numbers

Perform the indicated operation and write the result in standard form.

$$(2-3i)^2 (a+b)^2 = a^2 + 2ab + b^2$$

(2-3i)(2-3i) (2-3i)^2 = 4-12i + (3i)^2

$$=(2-3i)(2-3i)$$
 (2

- $= 4 6i 6i + (3i)^2$
- $= 4 12i + 9i^{2}$
- = 4 12i + 9(-1)

= -5 - 12i

Equity of Complex Numbers

are equal.

a + bi = c + di iff a = c and b = d

Imaginary parts with the second secon

Special Products

Perform the indicated operation and write the result in standard form.

- (4 + 5/)(4 5/)
 - $=4^{2}-(5i)^{2}$
 - = 16 25(-1)

= 41

$$(a+b)(a-b)=a^2-b^2$$

Conjugate of a Complex Number

📓 For the complex number a 🕇 bi, its complex conjugate is defined to be a - bi.

The product of a complex number and its conjugate is a real number.

- (a + bi)(a bi) $= a^2 - (bi)^2$ $=a^{2}-b^{2}(-1)$
 - $= a^{2} + b^{2}$

Complex Number Division

Mage The goal of complex number division is to obtain a real number in the denominator (rationalize the denominator).

We multiply the numerator and denominator of a complex number quotient by a value

(usually the conjugate of the denominator) to obtain a real number in the denominator.

Example: Dividing Complex Numbers

$$\frac{5+4i}{4-i} = \frac{5+4i}{4-i} \cdot \frac{4+i}{4+i}$$

$$=\frac{20+5i+16i+4i^{2}}{4^{2}-i^{2}}$$

 $=\frac{16+21i}{17}$ In standard form

form $\frac{16}{17} + \frac{21}{17}i$

STUDY TIP

Note that when you multiply the numerator and denominator of a quotient of complex numbers by

$$\frac{c - di}{c - di}$$

you are actually multiplying the quotient by a form of 1. You are not changing the original expression, you are only creating an expression that is equivalent to the original expression.

Principal Square Root of a Negative

Image of the second sec

Remember the order of operations, square root is an exponent and must be done first, thus

take care of the negative square root before any other operation.

$$\overline{b} = i\sqrt{b}$$

 $i\sqrt{25} \cdot i\sqrt{4} = i^2\sqrt{(25)(4)}$ = -\sqrt{100} = -10 AHHHH, much better

STUDY TIP

The definition of principal square root uses the rule

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

for a > 0 and b < 0. This rule is not valid if *both* a and b are negative. For example,

$$\sqrt{-5}\sqrt{-5} = \sqrt{5(-1)}\sqrt{5(-1)}$$
$$= \sqrt{5}i\sqrt{5}i$$
$$= \sqrt{25}i^{2}$$
$$= 5i^{2} = -5$$

whereas

$$\sqrt{(-5)(-5)} = \sqrt{25} = 5.$$

To avoid problems with square roots of negative numbers, be sure to convert complex numbers to standard form *before* multiplying.

Example

Rewrite in standard form
$$(1-\sqrt{-14})^2$$

Remember, take care of the negative first!

$$= \left(1 - i\sqrt{14}\right)^{2}$$

$$= 1^{2} - 2i\sqrt{14} + \left(i\sqrt{14}\right)^{2}$$

$$= 1 - 2i\sqrt{14} + 14i^{2}$$

$$= 1 - 2i\sqrt{14} + 14(-1)$$

$$= -13 - 2i\sqrt{14}$$

Example: Square Roots of Negatives

Perform the indicated operations and write the result in standard form.

a.
$$\sqrt{-27} + \sqrt{-48}$$

 $=i\sqrt{27}+i\sqrt{48}$

 $=3i\sqrt{3}+4i\sqrt{3}$

 $=7i\sqrt{3}$

$$b.\left(-2+\sqrt{-3}\right)^2$$
$$=\left(-2+i\sqrt{3}\right)^2$$

$$= (-2)^{2} + 2(-2)(i\sqrt{3}) + (i\sqrt{3})^{2}$$

$$= 4 + (-4i\sqrt{3}) + 3i^{2}$$

$$=1-4i\sqrt{3}$$

 $x^2 = -9$ $X = \pm \sqrt{-9}$ $X = \pm i\sqrt{9}$ *x* = ±3*i*

Do not forget that a negative number squared is positive.

Quadratic Equations with complex roots

Solve
$$x^2 + 6x + 15 = 0$$

$$x^{2} + 6x + _ = -15 + _ _$$

$$x^{2} + 6x + 9 = -15 + 9$$

$$(x + 3)^{2} = -6$$

$$x + 3 = \pm \sqrt{-6}$$

$$x + 3 = \pm i\sqrt{6}$$

$$x = -3 \pm i\sqrt{6}$$

Complete the square

Quadratic Equations with Complex Imaginary Solutions

A quadratic equation may be expressed in the general form

 $ax^2 +$

The quadratic can be solved using the quadratic formula,

M b² - 4ac is called the discriminant. If the discriminant is negative, a quadratic equation has no real solutions. Quadratic equations with negative discriminants have two solutions that are complex conjugates.

$$bx + c = 0$$

$$\pm \sqrt{b^2 - 4ac}$$
2a

Example: A Quadratic Equation with Imaginary Solutions

Solve using the quadratic formula: $X^2 - X^2$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{--2 \pm \sqrt{(-2)^2 - 4(1)(2)}}{2(1)}$$
$$= \frac{2 \pm \sqrt{4 - 8}}{2} = \frac{2 \pm \sqrt{-4}}{2}$$
$$2 \pm 2i$$

= _____

$$2x + 2 = 0$$

=1±*i*

complex conjugates. is $\{1 + i, 1 - i\}$.

