Chapter 3

Exponential and logarithmic functions

3.1 Exponential functions

Chapter 5.

Homework

3.1 p226 7-10.11-21 odd. 37. 43. 45. 47. 63. 66

Objectives

Evaluate exponential functions. Graph exponential functions. Evaluate functions with base e. Use compound interest formulas.

Definition of the Exponential Function

The exponential function f with base b is defined by

$f(x) = b^{x}$

Where b is a positive constant other than 1 (b > 0) and $b \neq 1$ and x is any real number.

and the exponent x is the independent variable.

$$f(x) = b^x, w$$

or
$$y = b^x$$

In The parent exponential function is $f(x) = b^{x}$, where the base b is a constant

where b > 0, $b \neq 1$

Evaluating an Exponential Function

- The exponential function $f(\mathbf{x}) = 42.2(1.56)^{\mathbf{x}}$ models the average amount spent, $f(\mathbf{x})$, in dollars, at a shopping mall after 🗙 hours.
 - What is the average amount spent, to the nearest dollar, after three hours at a shopping mall?

$$f(\mathbf{x}) = 42.2(1.56)^{\mathbf{x}}$$

 $f(\mathbf{3}) = 42.2(1.56)^{\mathbf{3}} \approx 1^{\mathbf{3}}$

After 3 hours at a shopping mall, the average amount spent is \$160.

60.21

Graphing an Exponential Function

Graph: $f(x) = 2^{x}$

You should know how to graph the parent exponential function $f(x) = 2^{x}$.

The domain is all real numbers $(-\infty, \infty)$.

The range is $\{y \mid y > 0\}$ $(0, \infty)$

	•	•	•	
X	-2	-1	0	1
f(x)	<u>1</u> 4	$\frac{1}{2}$	1	2

6 / 3 5

Graphing an Exponential Function TI-84

Graph: $f(x) = 2^{x}, 2^{x+2}, 2^{x+2}$

y =	$y = 2^{x}$							
	X	-2	-1	0	1			
	f(x)	<u>1</u> 4	1 2	1	2			

 $y = 2^{x+2}$

X	-4	-3	-2	-1	0	1
f(x)	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

 $y = 2^{x} + 2$

X	-2	-1	0	1	2	3
f(x)	$2\frac{1}{4}$	$2\frac{1}{2}$	3	4	6	10

7 / 3 5

Characteristics of Exponential functions of form $f(x) = b^{x}$.

- The domain of $f(x) = b^x$ consists of all real numbers $(-\infty, \infty)$
- The range of $f(x) = b^x$ consists of all positive real numbers (0, ∞)
 - The graph of $f(x) = b^x$ passes through (0, 1) as $f(0) = b^0 = 1$. Thus the y-intercept is 1.
 - The graph of $f(x) = b^x$ is asymptotic to the x-axis. Thus there is no x-intercept.

Characteristics of Exponential functions of form $f(x) = b^x$.

- If b > 1, $f(x) = b^x$ has a graph that goes up to the right and is an increasing function. The greater the value of b_{i} , the steeper the increase.
- If 0 < b < 1, $f(x) = b^x$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.
 - $f(x) = b^{x}$ is a one-to-one function, thus the inverse of f is also a function.

9 / 3 5

Reminder: Increasing and Decreasing Functions

A function is said to be increasing in the interval $[x_1, x_2]$ if for every value in the interval, if a > b, then f(a) > f(b)

 \square A function is said to be decreasing in the interval $[x_1, x_2]$ if for every value in the interval, if a > b, then f(a) < f(b)

Transformations of exponential functions.

Transformation	Equation	Description
Vertical translation	$g(x) = b^{x} + c$ $g(x) = b^{x} - c$	 Shifts the graph of f(x) = b^x upward c units. Shifts the graph of f(x) = b^x downward c units.
Horizontal translation	$g(x) = b^{x+c}$ $g(x) = b^{x-c}$	 Shifts the graph of f(x) = b^x to the left c units. Shifts the graph of f(x) = b^x to the right c units.
Reflection	$g(x) = -b^x$ $g(x) = b^{-x}$	 Reflects the graph of f(x) = b^x about the x-axis. Reflects the graph of f(x) = b^x about the y-axis.
Vertical stretching or shrinking	$g(x) = cb^x$	 Vertically stretches the graph of f(x) = b^x if c > 1. Vertically shrinks the graph of f(x) = b^x if 0 < c < 1.
Horizontal stretching or shrinking	$g(x) = b^{cx}$	 Horizontally shrinks the graph of f(x) = b^x if c > 1 Horizontally stretches the graph of f(x) = b^x if 0 < c < 1.

Vertical Shift $g(x) = b^{x} + c$

$g(x) = 1.5^{x} + 2$

 $f(x) = 1.5^{x}$

To transform f(x) = 1.5× into g(x) = 1.5× + 2 we added 2 to each y value and the graph shifts up 2 units.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-2	-1	0	1	2
2 4/9	2 2/3	3	2 3/2	4 1/4

Horizontal Shift $g(x) = b^{x+c}$

 $g(x) = 1.5^{x+2}$

 $f(x) = 1.5^{x}$

To transform $f(x) = 1.5^{x}$ into $g(x) = 1.5^{x+2}$ we subtracted 2 from each x value and the graph shifts left 2 units.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-4	-3	-2	-1	0
4/9	2/3	1	3/2	9/4

Vertical Reflection $g(x) = -b^x$

 $g(x) = -1.5^x$

 $f(x) = 1.5^{x}$

■ To transform f(x) = 1.5× into g(x) = -1.5× is reflected across the x-axis.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-2	-1	0	1	2
-4/9	-2/3	-1	-3/2	-9/4

To transform $f(x) = 1.5^{\times}$ into $g(x) = -1.5^{\times}$ we multiply each y value by -1 and the graph

Horizontal Reflection $g(x) = b^{-x}$

$g(x)=1.5^{-x}$

 $f(x) = 1.5^{x}$

■ To transform f(x) = 1.5× into g(x) = 1.5-× we multiply each x value by -1 and the graph is reflected across the y-axis.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-2	-1	0	1	2
9/4	3/2	1	2/3	4/9

Vertical Stretch $g(x) = ab^x$

$g(x) = 2(1.5)^{x}$

 $f(x) = 1.5^{x}$

X

f(x)

To transform $f(x) = 1.5^{\times}$ into $g(x) = 2(1.5)^{\times}$ we multiply each y value by 2 and the graph is stretched vertically.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-2	-1	0	1	2
8/9	4/3	2	3	9/2

Vertical Compression $g(x) = ab^x$

To transform $f(x) = 1.5^{\times}$ into $g(x) = 1/2(1.5)^{\times}$ we simply multiply each y value by 1/2and the graph is compressed vertically.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

2	1	0	-1	-2
2/9	1/3	1/2	3/4	9/8

Horizontal Stretch $g(x) = p^{ax}$

 $f(x) = 1.5^{x}$

$g(x) = 1.5^{\frac{1}{2}x}$ x

To transform f(x) = 1.5× into g(x) = 1.5¹/ graph is stretched horizontally by 2.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-4	-2	0	2	4
4/9	2/3	1	3/2	9/4

To transform $f(x) = 1.5^{\times}$ into $g(x) = 1.5^{1/2 \times}$ we simply multiply each x value by 2 and the

Horizontal Compression $g(x) = p^{ax}, a > 1$.

$g(x) = 1.5^{2x}$

 $f(x) = 1.5^{x}$

To transform $f(x) = 1.5^{\times}$ into $g(x) = 1.5^{2\times}$ we simply multiply each x value by 1/2 and the graph is compressed horizontally by 1/2.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-1	-1/2	0	1/2	1
4/9	2/3	1	3/2	9/4

Caution: Horizontal Shift w/ Compression $g(x) = b^{ax+c}$

$f(x) = 1.5^{x}$

$g(x) = 1.5^{2x+1}$

To transform $f(x) = 1.5^{x}$ into $g(x) = 1.5^{2x+1}$ we subtract 1 from each x and multiply by 1/2, the graph is shifted left and compressed.

-2	-1	0	1	2
4/9	2/3	1	3/2	9/4

-3/2	-3/4	-1/2	0	1/2
4/9	2/3	1	3/2	9/4

Order of Transformations

- Transformations can be combined within the same function so that one graph can be it may be graphed using the following order:
 - 1. Horizontal Translation
 - 2. Stretch or compress
 - 3. Reflect
 - 4. Vertical Translation

shifted, stretched, and reflected. If a function contains more than one transformation

Transformations Involving Exponential Functions

- Use the graph of $f(x) = 3^{x}$ to obtain the graph of $g(x) = 3^{x-1}$.

g(x) = f(x-1)

g(x) is found by a horizontal shift of 1 unit to the right.

Of course there is always.

X	-1	0	1	
g(x)	1/9	1/3	1	

Transformations Involving Exponential functions

Use the graph of $f(x) = 2^{x}$ to obtain the graph of $g(x) = 3(2^{x+1}) - 2$. g(x) = 3f(x+1) - 2.

g(x) is found by a horizontal shift of 1 unit to the left, a vertical stretch of 3

and a vertical shift down 2.

Of course there is always.

X	-2	-1	0
g(x)	-1/2	1	4

Transformations of Exponential Functions

Use the graph of $f(x) = 2^{x}$ to obtain the graph of $g(x) = 2^{2x+1}$. $g(x) = f(2x+1) = f\left(2\left(x+\frac{1}{2}\right)\right)$

g(x) is found by a horizontal shift of 1/2 unit to the left, and a horizontal compression by a factor of 2.

Of course there is always.

X	-2	-1	0	
g(x)	1/8	1/2	2	

Ouch!

If the annual rate of inflation averages 4% over the next 10 years, the years from now

$$C(t) = P(1.04)^{t}$$
 $C(t) = 23.95(1.04)^{10} \approx 35.45$

In 10 years an oil change is predicted to cost \$35.45.

approximate costs C of goods or services during any year in that decade will be modeled by $C(t) = P(1.04)^{t}$, where t is the time in years and P is the present cost. The price of an oil change for your car is currently 23.95. Estimate the price 10

Example

12% every year. How many residents will there be in 15 years?

$$P(t) = P(1+.12)^{t}$$
 $P(15) = 180(1.12)^{15} \approx 985.2418$

In 15 years the population is predicted to be about 985.

In 2005, there were 180 inhabitants in a remote town. Population has increased by

The Natural Base e

The number e is defined as the value the and larger. (As $n \rightarrow \infty$).

Break out the calculator and complete the table

X	1	10	100	1000	10,000	100,000	1,000,000
$\left(1+\frac{1}{x}\right)^{x}$	2	2.5937	2.7048	2.7169	2.7181	2.7183	2.7183

at
$$\left(1+\frac{1}{n}\right)^n$$
 approaches as n gets larger

The natural Base e

The irrational number, e, approximately 2.718, is called the natural base. The function $f(x) = e^x$ is called the natural exponential function.

Graphing powers of e is the same as graphing other exponential functions.

Graph 2^{\times} and 3^{\times} and e^{\times} on the TI-84.

 \square Looky there, e^{\times} is between 2[×] and 3[×], and very close to 3[×].

e ≈ 2.718281827

Example: Evaluating functions with Base e

recovery area in 2012.

2012 is 34 years after 1978, so x = 34.

$$f(x) = 1066e^{0.042x}$$
 $f(x) =$

The model predicts the gray wolf's population to be approximately 4446.

The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), x years after 1978. Project the gray wolf's population in the

- $1066e^{0.042(34)} \approx 4445.593255$

Example: Evaluating functions with Base e

model V(t) = $100e^{4.6052t}$, where t is the time in hours. Find V(1), V(1.5), and V(2).

$$V(1) = 100e^{4.6052(1)} \approx 10,000.2981$$
$$V(1.5) = 100e^{4.6052(1.5)} \approx 100,004.4722$$
$$V(2) = 100e^{4.6052(2)} \approx 1,000,059.63$$

The number V of computers infected by a computer virus increases according to the

1

.4722

Formulas for Compound Interest

following formula:

A =

rate (APR), and n = n umber of compounding periods per year.

If interest is compounded continuou

After t years, the balance, A, in an account with principal P and annual interest rate **r** (in decimal form), for **n** compounding periods per year, is given by the

$$P\left(1+\frac{r}{n}\right)^{nt}$$

A = A mount accrued, P = P rincipal (original investment), r = annual percentage

usly (
$$n \rightarrow \infty$$
) $A = Pe^{rt}$

Using Compound Interest formulas

A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to quarterly compounding.

We will use the formula for n compounding periods per year, with n = 4.

$$A = P\left(1 + \frac{r}{n}\right)^{n} = 10,000\left(1 + \frac{.08}{4}\right)^{4(5)} \approx 14,859.47$$

The balance of the account after 5 years subject to quarterly compounding will be about \$14,859.47.

Using Compound Interest formulas

after 5 years subject to **daily** compounding.

We will use the formula for n compounding periods per year, with n = 365.

$$A = P\left(1 + \frac{r}{n}\right)^{n} = 10,000\left(1 + \frac{.08}{.365}\right)^{365(5)} \approx 14,917.59$$

The balance of the account after 5 years subject to quarterly compounding will be about \$14,917.59.

A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account

Using Compound Interest formulas

A sum of \$10,000 is invested at an annual rate of 8%. Find the balance in the account after 5 years subject to **continuous** compounding.

We will use the formula for continuous compounding.

$$A = Pe^{rt} = 10,000e^{.08(t)}$$

\$14,918.25.

- $(5) \approx 14,918.25$

The balance in the account after 5 years subject to continuous compounding will be

EWWWW

A strain of bacteria growing on your desktop grows at a rate given by;

bacteria count at time 0.)

$$B = B_0 e^{0.1386294361t}$$

```
\square B(t) = B_0 e^{0.1386294361t}
```

where t is the time in minutes. Assuming that you start with only one bacterium, how many bacteria could be present at the end of 56 minutes? (Note: B_0 is the

```
= 1e^{0.1386294361(56)} \approx 2352.5342
```

So if you get 1 at the start of the period, you will have 2353 by period end.

