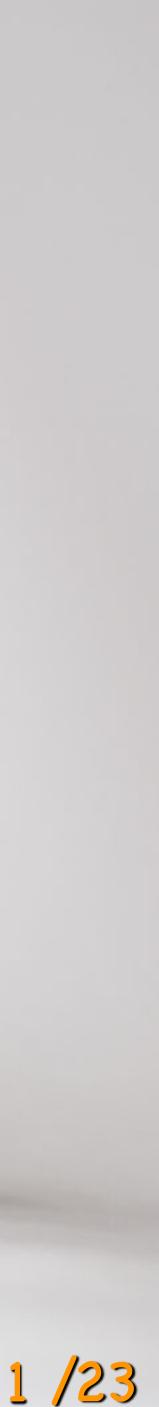


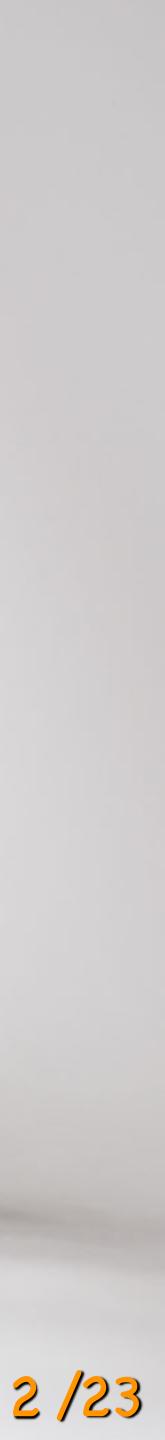
Exponential and Logarithmic Functions

3.2 Logarithmic Functions



Exponential and Logarithmic Functions

3.2 p236 3, 7, 11, 15, 19, 21, 25, 29, 33, 37, 41, 55, 63, 71, 85

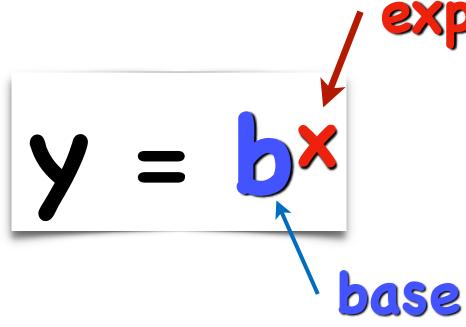


Chapter 3-2 Objectives

Change from logarithmic to exponential form. Change from exponential to logarithmic form. Evaluate logarithms. Use basic logarithmic properties. Graph logarithmic functions. Find the domain of a logarithmic function. Use common logarithms. Use natural logarithms.

Definition of the Logarithmic Function

- operation. The inverse of an exponential function is a logarithmic function.
 - The function given by $f(x) = \log_{b} x$, where x > 0, b > 0, and $b \neq 1$, is called the 0.0 logarithmic function with base b.
 - 0 0 Y base b; thus $y = \log_b x$ if and only if x = by.



We can solve an equation when the variable is in the exponent by using an inverse

The logarithmic function with base b is the inverse of the exponential function with

exponent (becomes logarithm)

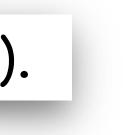
Definition of the Logarithmic Function

- function is also a function.
 - 00 which a specified **base** is raised to obtain a given value.
 - Let me repeat that... 00

Since exponential functions are one-to-one functions, the inverse of an exponential

The inverse operation is called finding the logarithm. A logarithm is the exponent to

A logarithm is the exponent to which a specified base is raised to obtain a given value (x).

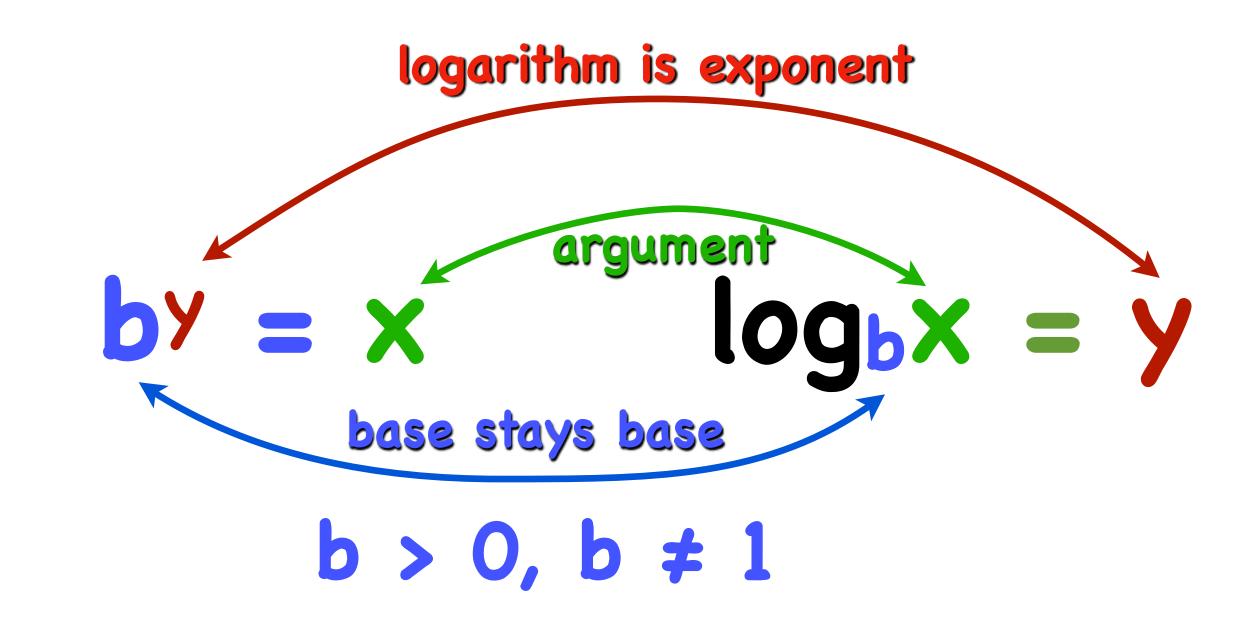


Definition of the Logarithmic Function

For x > 0 and b > 0, $b \neq 1$,

 $\mathbf{y} = \mathbf{log}_{\mathbf{x}} \mathbf{x}$ is equivalent to $\mathbf{b} \mathbf{y} = \mathbf{x}$.

The function $f(x) = \log_b x$ is the logarithmic function with base b.



Changing from Logarithmic to Exponential Form

- Write each equation in its equivalent exponential form: $y = \log_{b} x$ is equivalent to by = x.
 - $3 = \log_7 x$ is equivalent to $7^3 = x$

$$2 = \log_b 25$$
 is equ

 $\log_4 26 = y$ is equivalent to $4^y = 26$

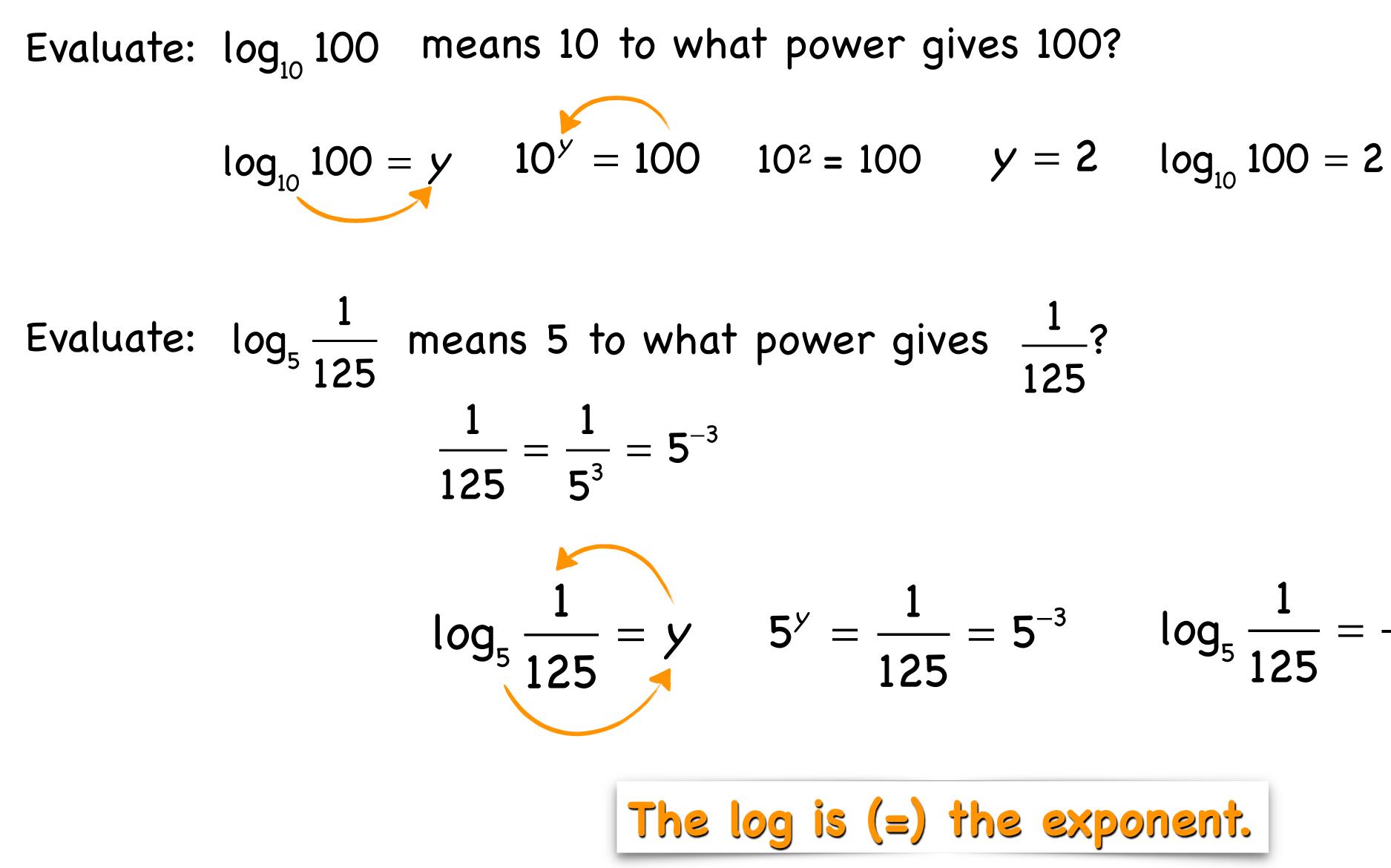
Write each equation in its equivalent logarithmic form:

 $y = \log_{b} x$ is equivalent to by = x.

- $2^5 = x$ is equivalent to $5 = \log_2 x$
- $b^3 = 27$ is equivalent to $3 = \log_b 27$
- $e^y = 33$ is equivalent to $\log_e 33 = y$

- ivalent to $b^2 = 25$

Example: Evaluating Logarithms



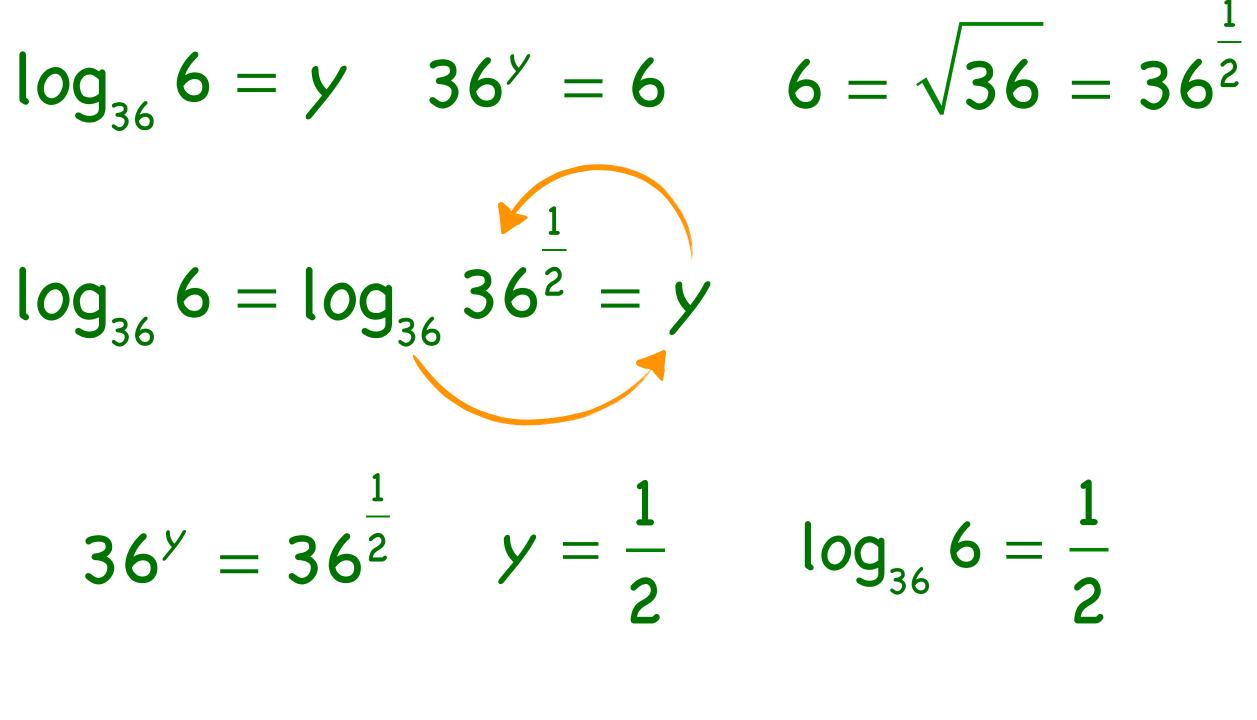
 $\log_5 \frac{1}{125} = \gamma \qquad 5^{\gamma} = \frac{1}{125} = 5^{-3} \qquad \log_5 \frac{1}{125} = -3$

The log is (=) the exponent.

Example: Evaluating Logarithms

Evaluate: $\log_{34} 6$ means 36 to what power equals 6?

 $\log_{36} 6 = \log_{36} 36^2 = y$



The log is (=) the exponent.

Example: Evaluating Logarithms

Evaluate: $\log_{3}\sqrt[7]{3}$ means 3 to what power gives $\sqrt[7]{3}$?

$$\log_{3} \sqrt[7]{3} = y \quad 3^{y} = \sqrt[7]{3} \quad \sqrt[7]{3} = 3^{\frac{1}{7}}$$
$$\log_{3} \sqrt[7]{3} = \log_{3} 3^{\frac{1}{7}} = y \quad 3^{y} = 3^{\frac{1}{7}} \quad y = \frac{1}{7}$$

$$\log_{3} \sqrt[7]{3} = \log_{3} 3^{\frac{1}{7}} = y$$

log

$$\sqrt[7]{3} = \frac{1}{7}$$

Basic Log Properties Involving One

 $(b^{1} = b)$

 $(b^{0} = 1)$ Evaluate: log₉9

Evaluate: log_81

1. $\log_{10} b = 1$ because 1 is the exponent to which b must be raised to obtain b.

- 2. $\log_{1} = 0$ because 0 is the exponent to which b must be raised to obtain 1.
 - Because $\log_{b}b = 1$, we conclude $\log_{9}9 = 1$
 - Because $\log_{b} 1 = 0$, we conclude $\log_{8} 1 = 0$.

Inverse Properties of Logarithms

For b > 0 and $b \neq 1$,

Evaluate: log₇

Evaluate: 3^{log}

$\log_{b} b^{x} = x$ and $b^{\log_{b} x} = x$

Note: In both cases, the bases are the same!

$$7^8 \quad \log_7 7^8 = 8$$

$$3^{17}$$
 $3^{\log_3 17} = 17$

Graphs of Exponential and Logarithmic Functions

Graph $f(x) = 3^{x}$ and $g(x) = \log_{3} x$ in the same rectangular coordinate system.

We can first set up a table of values for $f(x) = 3^{\times}$.

×	f(x)=3×
-2	1/9
-1	1/3
0	1
1	3
2	9

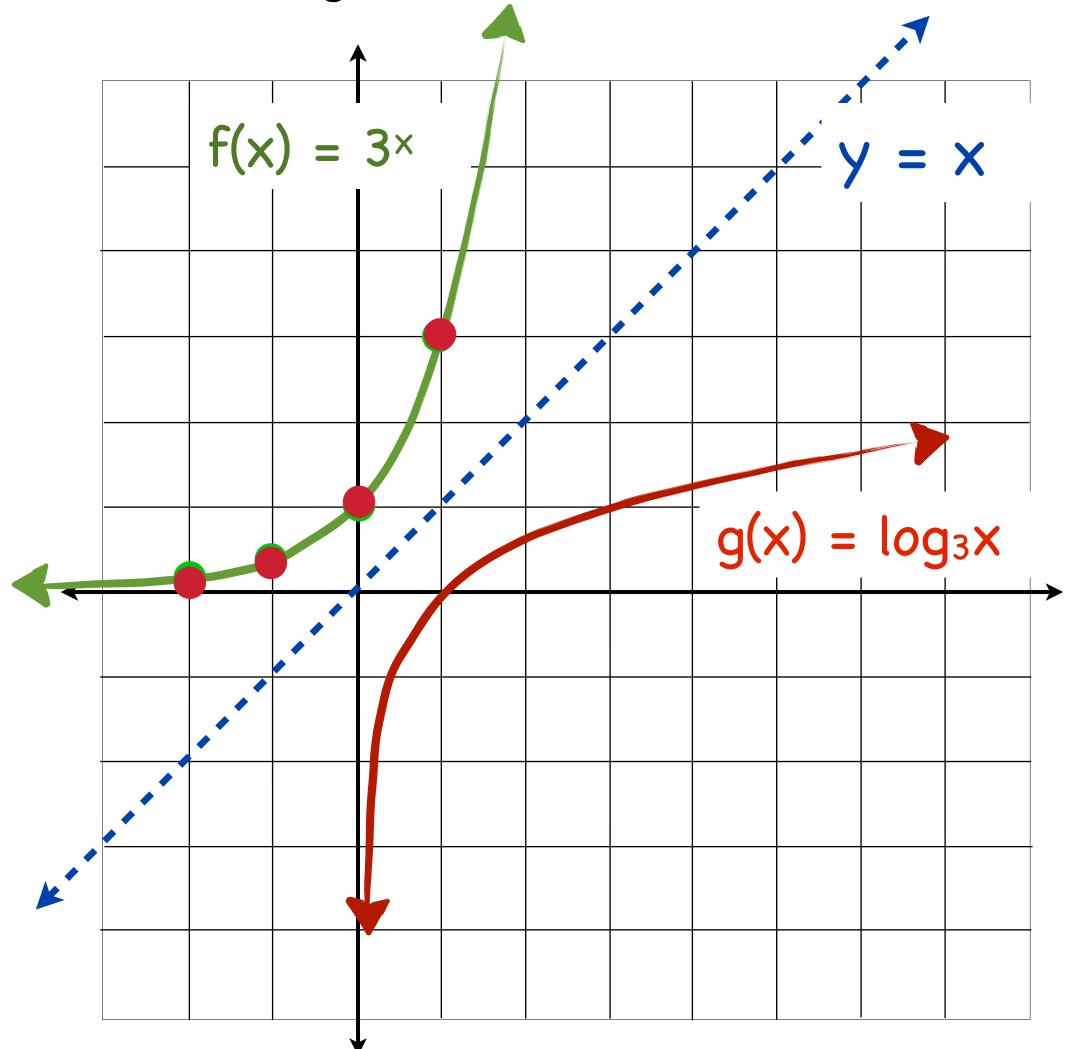
- Reverse the coordinates for the inverse function $g(x) = \log_3 x$

×	g(x)=log₃x		
1/9	-2		
1/3	-1		
1	0		
3	1		
9	2		

We now graph $f(x) = 3^{x}$ and $g(x) = \log_{3} x$ the same rectangular coordinate system.

×	f(x)=3×	×	g(x)=log₃x
-2	1/9	1/9	-2
-1	1/3	1/3	-1
0	1	1	Ο
1	3	3	1
2	9	9	2

 $g(x) = log_3 x$ is $f(x) = 3^{\times}$ reflected across y = x.



Characteristics of Logarithmic functions of the Form $f(x) = \log_b x$

The domain of $f(x) = \log_b x$ consists of all **positive** real numbers: $(0, \infty)$

The range of $f(x) = \log_b x$ consists of all real numbers: $(-\infty, \infty)$

the right

 $f(x) = loq_b x$.

- If the graphs of all log functions of the form $f(x) = \log_b x$ pass through the point (1,0).
- If b > 1, $f(x) = log_b x$ is an increasing function and has a graph that goes up to the right
- If 0 < b < 1, $f(x) = \log_b x$ is a decreasing function and has a graph that goes down to
- The graph of $f(x) = \log_b x$ is asymptotic to the y-axis. (The y-axis is an asymptote of

Table Repeat

Properties of Logarithms 1. $\log_a 1 = 0$ because $a^0 = 1$. **2.** $\log_a a = 1$ because $a^1 = a$. **3.** $\log_a a^x = x$ and $a^{\log_a x} = x$ 4. If $\log_a x = \log_a y$, then x = y.

Inverse Properties

One-to-One Property

Transformations of Log Function

Table 4.4 Transformations Involving Logarithmic Functions

In each case, c represents a positive real number.

Transformation	Equation	Description
Vertical translation	$g(x) = \log_b x + c$ $g(x) = \log_b x - c$	 Shifts the graph of f(x) = log_b x upward c units. Shifts the graph of f(x) = log_b x downward c units.
Horizontal translation	$g(x) = \log_b(x + c)$ $g(x) = \log_b(x - c)$	 Shifts the graph of f(x) = log_b x to the left c units. Vertical asymptote: x = -c Shifts the graph of f(x) = log_b x to the right c units. Vertical asymptote: x = c
Reflection	$g(x) = -\log_b x$ $g(x) = \log_b(-x)$	 Reflects the graph of f(x) = log_b x about the x-axis. Reflects the graph of f(x) = log_b x about the y-axis.
Vertical stretching or shrinking	$g(x) = c \log_b x$	 Vertically stretches the graph of f(x) = log_b x if c > 1. Vertically shrinks the graph of f(x) = log_b x if 0 < c < 1.
Horizontal stretching or shrinking	$g(x) = \log_b(cx)$	 Horizontally shrinks the graph of f(x) = log_b x if c > 1. Horizontally stretches the graph of f(x) = log_b x if 0 < c < 1.

The Domain of a Logarithmic Function

- The domain of an exponential function of the form $f(x) = b^x$ includes all real numbers and its range is the set of positive real numbers.
 - Because the logarithmic function is the inverse of the exponential function, the logarithmic function reverses the domain and the range of the exponential function.
 - The domain of a logarithmic function of the form $f(x) = \log_b x$ is the set of all positive real numbers. In general, the domain of $f(x) = \log_b[g(x)]$ consists of all x for which g(x) > 0.



Finding the Domain of a Logarithmic Function

Find the domain of $f(x) = \log_4(x - 5)$.

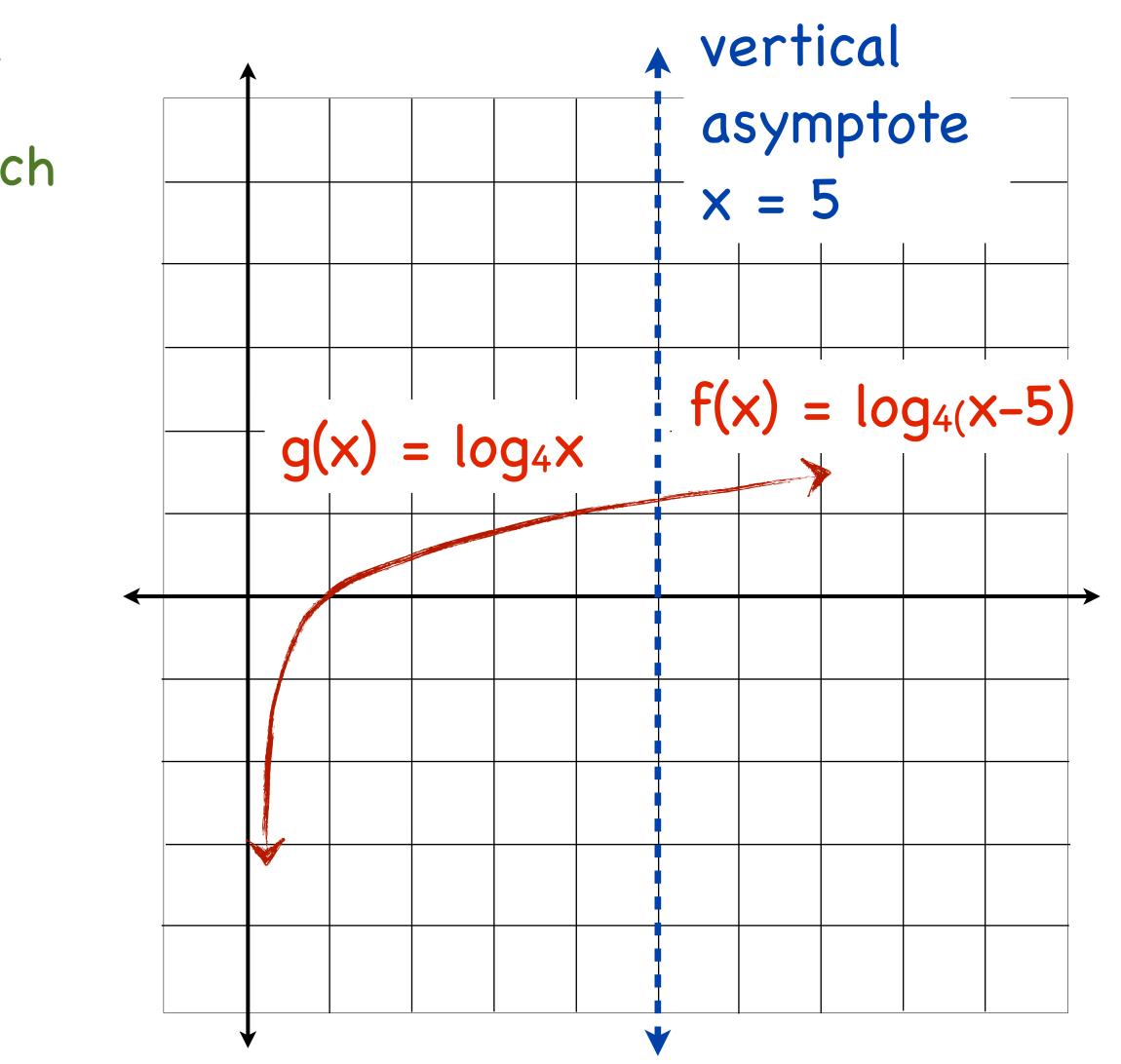
The domain of f consists of all x for which x - 5 > 0.

Thus, the domain of f is $(5, \infty)$

If we graph $f(x) = \log_4(x - 5)$ we can see the domain.

 $f(x) = log_4(x - 5)$ is $g(x) = log_4x$ shifted 5 units right.

All point of f(x) = log4(x-5) have x coordinates > 5.



Common Logarithms

The function $f(x) = \log_{10} x$ is usually expressed $f(x) = \log x$.

When the base is not given in the expression it is assumed to be 10.

on how to calculate the value of a common log on the TI.

The logarithmic function with **base 10** is called the **common logarithmic function**.

The TI-84 has a LOG button for common log. You should not need instruction

Example: Application

adult height has a boy attained at age ten?

f(x) = 29 + 48.8loq(x + 1)

 $f(10) = 29 + 48.8\log(10 + 1)$

f(10) = 29 + 48.8loq(11)

 $f(10) \approx 29 + 48.8(1.04139)$

 $f(10) \approx 79.82$

The percentage of adult height attained by a boy x years old can be modeled by f(x) = 29 + 48.8log(x + 1) where x represents the boy's age (from 5 to 15) and f(x)represents the percentage of his adult height. Approximately what percentage of his

Natural Logarithms

The logarithmic function with base e is called the natural logarithmic function.

The function $f(x) = \log_e x$ is usually expressed $f(x) = \ln x$.

logarithms of any other base.

$$lne = 1 (e^1 = e)$$

The domain of $f(x) = \ln x$ consists of all positive real numbers: (0, ∞)

- The range of $f(x) = \ln x$ consists of all real numbers: $(-\infty, \infty)$
- The graph of $f(x) = \ln x$ is asymptotic to the y-axis.

The graph of $f(x) = \ln x$ passes through the point (1,0).

The TI-84 has a LN button for natural logs. You should not need instruction on how to calculate the value of a natural log on the TI.

- The properties of the natural logarithm are identical to the properties for
 - $ln1 = 0 (e^0 = 1)$

Example: Application

- When the outside air temperature is anywhere from 72° to 96° Fahrenheit, the temperature in an enclosed vehicle climbs by 43° in the first hour. The function
 - f(x) = 13.4 lnx 11.6
 - models the temperature increase, f(x), in degrees Fahrenheit, after x minutes. Use the function to find the temperature increase, to the nearest degree, after 30 minutes.

f(x) = 13.4 lnx - 11.6 $f(30) = 13.4 \ln 30 - 11.6$ $f(30) \approx 13.4(3.4012) - 11.6$ f(30) ≈ 33.98°

The temperature will increase by approximately 34° after 30 minutes.

