Chapter 4

Trigonometric Functions

4.4 Trigonometric Functions of any Angle

Chapter 44

Honework

× 44 p318 1-85 odd, 91

Chapter 44

Objectives

Ą.

Use the definitions of trigonometric functions of any angle. Use the signs of the trigonometric functions. Find reference angles. Use reference angles to evaluate trigonometric functions.

Pefinitions of Trigonometric Functions of Any Angle

 \preceq Let Θ be any angle in standard position and let $P(\mathbf{x}, \mathbf{y})$ be a point on the terminal side of Θ .

defined by the following ratios:

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

$rightarrow If r^2 = \chi^2 + \gamma^2$ is the distance from (0, 0) to (χ , γ) the six trigonometric functions of Θ are

The signs of the Trigonmetric Functions

 \preceq We are now considering angles of any measure. Thus some angles will have the terminal side anywhere on the coordinate plane.

 \preceq The sign of the trigonometric ratios are determined by the quadrant in which the terminal side lies.

The signs of the Trigonmetric Functions

\preceq If sing < 0, and cosg < 0, name the quadrant in which the angle g lies.

주 Quadran	Quadrant I All functions positive	Quadrant II sine and cosecant positive
	Quadrant IV cosine and secant positive	Quadrant III tangent and cotangent positive

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

IT III

Don't pretend this situation makes trig any more useful to my real teenage life.

No one's buying it.

@themathsmagpie someecards

Evaluating Trigonometric Functions Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq Let P(1, -3) be a point on the terminal side of θ .

Find each of the six trigonometric functions of θ .

 $\csc \theta = \frac{r}{v} = \frac{\sqrt{10}}{-3}$ $\sec \theta = \frac{r}{r} = \frac{\sqrt{10}}{1}$ $\cot \theta = \frac{x}{x} = \frac{1}{x}$

Evaluating Trigonometric Functions Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq Given that $\cos\theta = 3/5$ and $\tan\theta < 0$. Find each of the six trigonometric functions of θ .

 $rightarrow \cos\theta = 3/5$ x = 3, r = 5 $\cos\theta > 0, \tan\theta < 0$ so QIV sind < 0

- \preceq Evaluate, if possible, the trigonometric functions at the following quadrantal angle: $\theta = 0^\circ = 0$ radians.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq If θ = 0° = 0 radians then the terminal side is on the positive x-axis. Select a point on the x-axis (1,0).

 $\sin \theta = \frac{\gamma}{r} = \frac{0}{1} = 0$ $\csc \theta = \frac{r}{v} = \frac{1}{0} = undefined$ $\cos \theta = \frac{x}{r} = \frac{1}{1} = 1$ $\sec \theta = \frac{r}{r} = \frac{1}{1} = 1$ $\tan \theta = \frac{y}{r} = \frac{0}{1} = 0$ $\cot \theta = \frac{x}{r} = \frac{1}{0} = undefined$

 \preceq Now try using another point on the x-axis.

rightarrow Evaluate, if possible, the trigonometric functions at the following quadrantal angle: $\Theta = 90^{\circ} = \frac{\pi}{2}$ radians.

rightarrow If $\Theta = 90^\circ = \frac{\pi}{2}$ radians then the terminal side of the angle is on the positive y-axis. \preceq Choose P(0, 1); x = 0 and y = 1. $\sin\theta =$

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

$$\frac{y}{r} = \frac{1}{1} = 1$$

$$\csc \theta = \frac{r}{y} = \frac{1}{1} = 1$$

$$\frac{x}{r} = \frac{0}{1} = 0$$

$$\sec \theta = \frac{r}{x} = \frac{1}{0} = undefined$$

$$\sec \theta = \frac{x}{y} = \frac{1}{0} = undefined$$

 \preceq Now try using another point on the y-axis.

- \preceq Evaluate, if possible, the trigonometric functions at the following quadrantal angle: $\theta = 180^{\circ} = \pi$ radians.
 - rightarrow If θ = 180° = π radians then the terminal side is on the negative x-axis. Select a point on the x-axis (-1,0).

rightarrow P = (-1, 0) with x = -1 and y = 0.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

$$\frac{0}{1} = 0 \qquad \csc \theta = \frac{r}{y} = \frac{1}{0} = \text{undefined}$$
$$\frac{-1}{1} = -1 \qquad \sec \theta = \frac{r}{x} = \frac{1}{-1} = -1$$
$$\frac{0}{-1} = 0 \qquad \cot \theta = \frac{x}{y} = \frac{-1}{0} = \text{undefined}$$

rightarrow Evaluate, if possible, the trigonometric functions at the following quadrantal angle: $\Theta = 270^{\circ} = \frac{3\pi}{2}$ radians.

rightarrow If $\Theta = 270^{\circ} = \frac{3\pi}{2}$ radians then the terminal side of the angle is on the negative y-axis.

 \angle Choose P(0, -1); x = 0 and y = -1.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

Trig Functions for Quadrantal Angles

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

90, π/2	180, π	270, 3 T /2
1	0	-1
0	-1	0
undefined	0	undefined

Trig Functions for Special Angles

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

30°, π/6	60°, π/3	45, τ/4
<u>1</u> 7	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$
$\sqrt{3}$	2	<u>√2</u>
2	2	2
3	√3	1

rightarrow You will save yourself a ton of time, heartache, and anxiety if you memorize these values.

Trig Functions for Special Angles

STUDY TIP

Learning the table of values at the right is worth the effort because doing so will increase both your efficiency and your confidence. Here is a pattern for the sine function that may help you remember the values.

Reverse the order to get cosine values of the same angles.

Trigonometric Values of Common Angles

θ (degrees)	0°	30°	45°	60°	90°	180°	270
θ (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
$\sin \theta$	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	- 1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
tan <i>θ</i>	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undef.	0	Unde

The Signs of the Trigonometric Functions

 \preceq The sign of the trigonometric ratios are determined by the quadrant in which the terminal side lies.

Hey baby! What's your sine? OCOURNETGIBBONS

Example: Finding the Quadrant in Which an Angle Lies

 \preceq If sin θ < 0, and cos θ < 0, name the quadrant in which the angle θ lies.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

\preceq Quadrant III

"I've decided to forego trigonometry, and make myself eligible for the NBA draft."

Evaluating Trigonometric Functions Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 $rightarrow Given \tan \Theta = -\frac{1}{3}$ and $\cos \Theta < 0$, find $\sin \Theta$ and $\sec \Theta$.

 \preceq Because both the tangent and the cosine are negative, Θ lies in Quadrant II.

$$(-3)^2 + 1^2 = \sqrt{10}$$

$$\sec\theta = \frac{\sqrt{10}}{-3} = -\frac{\sqrt{10}}{3}$$

Definition of a Reference Angle

 \preceq Let Θ be a non-acute angle ($\Theta \ge 90^\circ$) in standard position that lies in a quadrant. Its reference angle is the positive acute angle Θ formed by the terminal side of Θ and the x-axis.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq Find the reference angle, Θ for each of the following angles:

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

Finding Reference Angles for Angles Greater Than $360^{\circ}(2\pi)$ or Less Than -360°

- \preceq To find reference angles for angles > 360° (2 π) or < -360° (-2 π) follow these steps:
 - 1. Find a positive angle α less than 360° (2 π) that is co-terminal with the given angle.
 - 2. Praw a in standard position.
 - 3. Use the drawing to find the reference angle for the given angle. The positive acute angle formed by the terminal side of and the x-axis is the reference angle.

Example: Finding Reference Angles

\preceq Find the reference angle Θ for each of the following angles:

∠ a. **θ** = 665°

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

Example: Finding Reference Angles

 \preceq Find the reference angle Θ for each of the following angles:

Example: Finding Reference Angles

 \preceq Find the reference angle Θ for each of the following angles:

- trigonometric function of the reference angle, θ , except, possibly, for the sign.
 - \preceq A function value of the acute reference angle, Θ , is always positive. However, the same function value for Θ may be positive or negative.
 - \preceq To determine the sign of the function value for θ , simply determine the Quadrant in which θ falls.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq The values of the trigonometric functions of a given angle, Θ , are the same as the values of the

A Procedure for Using Reference Angles to Evaluate Trigonometric Functions

- \preceq In other words. To determine the value of a trigonometric function of any angle Θ is found by:
 - 1. Find the associated reference angle, θ , and the function value for θ .
 - 2. Use the quadrant in which Θ lies to determine the appropriate sign for the function value of $\boldsymbol{\Theta}$.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq Use reference angles to find the exact value of sin 135°.

rightarrow Step 1 Find the reference angle, θ' and sin θ' .

135° is in QIF, sin > 0

 \preceq Step 2 Use the guadrant in which Θ lies to prefix the appropriate sign to the function value.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

35

rightarrow Use reference angles to find the exact value of $\tan \frac{5\pi}{2}$.

 \preceq Step 1 Find the reference angle, θ and sin θ . $\theta' = \frac{5\pi}{4} - \pi = \frac{\pi}{4} \quad \tan\frac{\pi}{4} = 1$

 \preceq Step 2 Use the quadrant in which θ lies to prefix the appropriate sign to the function value.

$$\frac{5\pi}{4} \text{ is in QII, tan > 0} \quad \tan\frac{5\pi}{4} =$$

rightarrow Use reference angles to find the exact value of sec $\left(-\frac{\pi}{6}\right)$.

 \preceq Step 1 Find the reference angle, θ' and sin θ' . $\theta' = \frac{\pi}{6}$ $\sec \frac{\pi}{6} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$

 \preceq Step 2 Use the quadrant in which θ lies to prefix the appropriate sign to the function value.

$$-\frac{\pi}{6}$$
 is in QIV, sec > 0 sec $\left(-\frac{\pi}{6}\right)$

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

rightarrow Evaluate $\cos \frac{13\pi}{2} \sec \frac{5\pi}{2} - \cot \frac{\pi}{3}$

 \preceq Step 1 Find the reference angles, Θ

0' _	13 π	12 π	$-\pi$	$\cos \frac{13\pi}{1}$
0 =	3	3	3	3
Α'-	6π	5π_	π	5 π
0 -	3	3	3	3

 \preceq Step 2 Use the quadrant in which Θ lies to prefix the appropriate sign to the function value.

Objectives: Use the trig ratios for any measure angle. Find the reference angle.

$\cos\frac{13\pi}{3}\sec\frac{5\pi}{3} - \cot\frac{\pi}{3} = \frac{1}{2}\cdot\frac{2}{1} - \frac{1}{\sqrt{3}} = 1 - \frac{1}{\sqrt{3}}$

$$rightarrow$$
 Evaluate $6 \tan \frac{9\pi}{4} + \sin \frac{2\pi}{3} \sec \frac{13\pi}{6}$

 \preceq Step 1 Find the reference angles, Θ

0'-	9π	8π_	π	$\tan \frac{9\pi}{2}$ =
0 =	4	4	4	4
01	3π	2π	π	2π
H =			- 3	$\frac{\sin -3}{3}$

0'	13 π	12π	π	13 π
0 =	6	6	6	sec <u>6</u>

 \preceq Step 2 Use the quadrant in which θ lies to prefix the appropriate sign to the function value.

Objectives: Use the trig ratios for any measure angle. Find the reference angle. Finding the Measure of an Angle

 \preceq Let 9 be an angle in the third quadrant such that $\cos \theta = -1/4$. Find 0, then find $\sin \theta$, and $\tan \theta$.

$$\cos \theta = \frac{x}{r} = -\frac{1}{4} \qquad x = -1, r = 4 \qquad y = -\sqrt{r^2 - x^2} = -\sqrt{4^2 - (-1)^2} = -\sqrt{15}$$

$$\sin \theta = -\frac{\sqrt{15}}{4} \qquad \text{(third quadrant)}$$

$$\tan \theta = \frac{y}{x} = \frac{\sqrt{15}}{1} \qquad \text{(third quadrant)}$$

\preceq Now we get to find Θ .

Objectives: Use the trig ratios for any measure angle. Find the reference angle. Finding the Measure of an Angle

 \preceq Let 9 be an angle in the third quadrant such that $\cos \theta = -1/4$. Find 0, then find $\sin \theta$, and $\tan \theta$.

- \preceq To find the angle Θ we must briefly meet some new friends, arccosine, arcsine, arctangent. Also known as inverse cosine (cos⁻¹), inverse sine (sin⁻¹), and inverse tangent (tan⁻¹). These values are angle measures that give us the ratios.
- \preceq The sine of an angle is a ratio, the inverse sine of a ratio give us an angle.

$$\sin \theta = \frac{y}{r}$$

$$\sin^{-1}\frac{y}{r}=\theta$$

Finding the Measure of an Angle Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq Let 9 be an angle in the third quadrant such that $\cos \theta = -1/4$. Find 0, then find $\sin \theta$, and $\tan \theta$.

$\pi - 1.8235 = 1.3181$ radians

 \angle And add to π π + 1.3181 = 4.4597 radians

- \preceq Fortunately, our calculator can do the heavy lifting, BUT IT CANOT DO THE THINKING FOR YOU.
 - radians = 1.823476582
- \preceq But 1.8234 is not in the 3rd quadrant. To find the correct angle we need to find the reference angle.

Finding the Measure of an Angle Objectives: Use the trig ratios for any measure angle. Find the reference angle.

 \preceq Let 9 be an angle in the third quadrant such that $\cos \theta = -1/4$. Find 0, then find $\sin \theta$, and $\tan \theta$.

 \preceq Should you wish to know the angle in degrees you must set the calculator mode to degree.

 \preceq Now we can find the rest of the values

$$\sin \theta = -\frac{\sqrt{15}}{4}$$
$$\tan \theta = \frac{-\sqrt{15}}{-1} = \sqrt{15}$$

