Chapter 7 Systems of Equations and Inequalities

7.1 Systems of Equations in Two Variables

Homework

Read Sec 7.1 and complete reading notes. Po p503 5-27 odd, 35, 41, 43, 45, 47, 49-59 odd, 63, 67 Complete the worksheet.

Objectives

Solve linear systems by substitution.
 Solve systems of equations graphically
 Identify systems that do not have exactly one ordered-pair solution.
 Solve problems using systems of linear equations.

Systems of Linear Equations and Their Solutions

linear equations.

A solution to a system of linear equations in two variables is an ordered pair that satisfies both equations in the system.

- A linear system that has at least one solution is called a consistent system. A linear system with no solution is called an inconsistent system.

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

All equations in the form Ax + By = C are straight lines when graphed. That is why they are called

Combining two, or more, such equations is called a system of linear equations or a linear system.

Determining Whether Ordered Pairs are Solutions of a system accords to a

$$\begin{cases} 2x - 3y = -4 \\ 2x + y = 4 \end{cases}$$

 \mathbf{P} Determine if the ordered pair (1, 2) is a solution of the system.

$$2x - 3y = -4$$
 The order
 $2(1) - 3(2) = -4$ (1, 2) is
 $2 - 6 = -4$ the sys

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

red pair (1, 2) both equations.

a solution of stem.

$$2x + y = 4$$

 $2(1) + 2 = 4$
 $2 + 2 = 4$

Determining Whether Ordered Pairs Are Solutions of a System accorded to be

$$\begin{cases} 2x - 3y = -4 \\ 2x + y = 4 \end{cases}$$

 \mathbf{P} Petermine if the ordered pair (7, 6) is a solution of the system.

$$2x - 3y = -4$$
 The order
 $2(7) - 3(6) = -4$ (7, 6) is no
 $14 - 18 = -4$ the system

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

red pair (7, 6) only one equation.

ot a solution of **M**.

$$2x + y = 4$$

 $2(7) + 2 = 4$
 $14 + 6 \neq 4$

Solving Linear Systems by Substitution

Procedure for solving a system of linear equations by substitution

- 1. Solve either of the equations for one variable in terms of the other variable.
- 2. Substitute the expression from step 1 into the other equation. This results in a single equation with a single variable.
- 3. Solve the new equation from step 2 for the remaining variable.
- 4. Substitute the value found for the variable in step 3 into either of the original equations and solve for the remaining variable.
- 5. Check the final ordered pair in both equations.
- 6. Be certain to write the solution as an ordered pair!

Example: Solving a System by Substitution

 $\begin{cases} 3x + 2y = 4 \\ 2x + y = 1 \end{cases}$

2. 3x + 2y = 41. 2x + y = 1

3x + 2(-2x + 1) = 4y = -2x + 1

4. 2x + y = 1**4.** 3x + 2y = 43(-2) + 2y = 42(-2) + y = 1-6+2y=4-4 + y = 1

y = 5

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

3. 3x + -4x + 2 = 4-x + 2 = 4*x* = -2

2y = 10

y = 5

5. Check the solution.

The solution of the system is (-2, 5)

From the Book

Method of Substitution

- **1.** Solve one of the equations for one variable in terms of the other.
- an equation in one variable.
- 3. *Solve* the equation obtained in Step 2.
- in Step 1 to find the value of the other variable.
- 5. *Check* that the solution satisfies *each* of the original equations.

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

2. Substitute the expression found in Step 1 into the other equation to obtain

4. *Back-substitute* the value obtained in Step 3 into the expression obtained

Because many steps are required to solve a system of equations, it is very easy to make errors in arithmetic. So, you should always check your solution by substituting it into each equation in the original system.

Finding solutions graphically

To solve a linear system graphically using the TI-84:

- 1. Solve both of the equations for y in terms of x.
- 2. Enter both equations into | y=

- 5. Check the final ordered pair in both equations.
- 6. Be certain to write the solution as an ordered pair!

Graphing Manually

Of course you can always graph using pencil and graph paper to find the solution.

WWW.SIDHARTHCHATURVEDI.COM

avilla the

Finding Solutions Graphically

$$\begin{cases} 3x + 2y = 4 \\ 2x + y = 1 \end{cases}$$

$$y = -\frac{3}{2}x + 2$$

$$y = -2x + 1$$

The solution of the system is (-2, 5)

The Number of Solutions to a System of Two Linear Equations

- Keep in mind that a solution to a system of equations satisfies every equation in the system. It is very possible that there is no solution to the system.
- The number of solutions to a system of two equations in two variables is either 0, 1, or infinitely many.

1 solution

Infinite solutions

13/23

A System with No Solution

Solve the system: $\begin{cases} 5x - 2y = 4 \\ -10x + 4y = 7 \end{cases}$ 1. 5x - 2y = 4 $y = \frac{5}{2}x - 2$ $y = \frac{5}{2}x - 2$ -10x + 4y = 7 $-10x + 4\left(\frac{5}{2}x - 2\right) = 7$ and

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

3. -10x + 10x - 8 = 7**-8** = **7**

Obviously, this cannot happen.

There is no solution to the system \varnothing

A System with Infinitely Many Solutions

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

3. 20y - 40 - 20y = -40**-40** = **-40**

Obviously, this will always happen no matter the value of y.

There are infinitely many solutions to the system.

15/23

A company that manufactures running shoes has a fixed cost of \$300,000. Additionally, it costs \$30 to produce each pair of shoes. They are sold at \$80 per pair.

- a. Write the cost function, C, of producing x pairs of running shoes. C(x) = 30x + 300.000
- b. Write the income function, S, from the sale of x pairs of running shoes.

S(x) = 80x

Finding a Break-Even Point

- A company that manufactures running shoes has a fixed cost of \$300,000. Additionally, it costs \$30 to produce each pair of shoes. They are sold at \$80 per pair.
 - c. Determine the break-even point for sales.
 - \Re The break even point is where sales = costs or C(x) = S(x).
 - S(x) = 80xC(x) = 30x + 300,000S(x) = 80xS(x) = 80(6000)
 - S(x) = 480,00030x + 300,000 = 80x300,000 = 50x
 - *x* = 6000

The break even point is at (6000, 480,000)

Income of \$480,000 on sales of 6000 units.

We solved linear systems by substitution. Non-linear systems can also be solved by substitution.

Solve the system: $\begin{cases} x^2 + y^2 = 5 \\ x + y = 1 \end{cases}$

1.
$$x + y = 1$$

 $y = -x + 1$
2. $x^2 + y^2 = 5$
 $x^2 + (-x + 1)^2$

4.
$$x + y = 1$$

 $(-1) + y = 1$
 $y = 2$
 $x + y = 1$
 $y = -1$

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

3.
$$x^{2} + x^{2} - 2x + 1 = 5$$

 $2x^{2} - 2x + 1 = 5$
 $2x^{2} - 2x - 4 = 0$
 $x^{2} - x - 2 = 0$
 $(x + 1)(x - 2) = 0$
 $x = -1 \text{ or } 2$

Check the solutions. 5.

> The solutions to the system are (-1, 2) and (2, -1)

May 3

Non-Linear Systems

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

This one is tough to do on your calculator because it requires graphing a circle (parametric equations)

Non-Linear Systems

$$\begin{cases} x^2 - y = -6 \\ x - 4y = 8 \end{cases}$$

1.
$$x - 4y = 8$$

 $x = 4y + 8$

2.
$$x^2 - y = -6$$

 $(4y + 8)^2 - y = -6$

There are no real solut

3.
$$16y^2 + 64y + 64 - y = -6$$

 $16y^2 + 63y + 70 = 0$
 $y = \frac{-63 \pm \sqrt{63^2 - 4(16)(70)}}{2(16)}$
tions. $y = \frac{-63 \pm \sqrt{-511}}{32}$

Non-linear Systems

7.1 Objective: Use substitution and graphing to solve systems of linear and nonlinear equations

This system can be easily seen on your calculator but you may have to resize the window.

Non-Linear Systems

ļ

$$\begin{cases} \mathbf{y} = \mathbf{e}^{\mathbf{x}} \\ \mathbf{x} + \mathbf{y} = \mathbf{1} \end{cases}$$

$$V = e^x$$

$$2. \quad x + y = 1$$
$$x + e^{x} = 1$$

4.
$$x + y = 1$$

(0) + y = 1
 $y = 1$

5. Check the solutions The solution to the system is (0, 1)

3.
$$X + e^{x} = 1$$

$$e^x = 1 - x$$
$$\ln(1 - x) = x$$

$$\frac{\ln 1}{\ln x} = x$$

$$\frac{0}{\ln x} = x$$

$$x = 0$$

Non-Linear Systems

Solve the system graphically: $\begin{cases} y' = e^x \\ x + y = 1 \end{cases}$

