# Chapter 9

# Sequences, and Series

### 9.3 Geometric Sequences





# chapter 9





Read Sec 9.3



Complete Reading Notes



Do 9-3 Worksheet



# Chapter 9-3

## Objectives



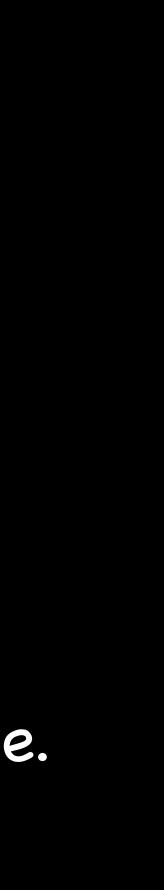








S Use the formula for the general term of a geometric sequence S Use the formula for the sum of the first h terms of a geometric sequence. (A) Use the formula for the sum of an infinite geometric sequence.



### Definition of a Geometric Sequence **Objective**: Identify, write, and manipulate geometric sequences.

which we multiply each time is called the **common ratio** of the sequence.

Solution Where r is the comm

A geometric sequence is a sequence in which each term after the first is obtained by multiplying the preceding term by a fixed nonzero constant. The amount by

 $\square$  In short, a geometric sequence satisfies the recursive condition:  $a_n = a_{n-1}r$ 

non ratio and 
$$\frac{a_n}{a_{n-1}} = r$$







### Definition of a Geometric Sequence **Objective**: Identify, write, and manipulate geometric sequences.

### Solution From your book

### **Definition of Geometric Sequence**

such that

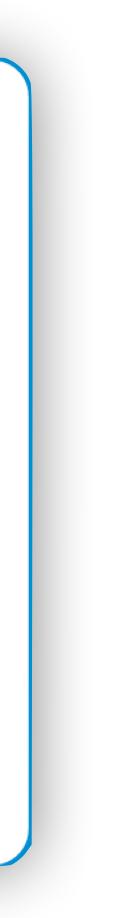
$$\frac{a_2}{a_1} = r, \quad \frac{a_3}{a_2} = r, \quad \frac{a_4}{a_3} = r, \quad r$$

and so the number r is the common ratio of the sequence.

A sequence is **geometric** if the ratios of consecutive terms are the same. So, the sequence  $a_1, a_2, a_3, a_4, \ldots, a_n \ldots$  is geometric if there is a number r

### $\neq 0$







### Example: Writing the General Term for a Geometric Sequence **Objective**: Identify, write, and manipulate geometric sequences.

So Write the general (nth) term for the geometric sequence  $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots$ 

First term = 1Common ratio =

 $a_n = a_{n-1} \left( \frac{1}{2} \right)$ 

Solution This is the recursive rule for the nth term

$$r = \frac{\frac{1}{2}}{1} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{\frac{1}{2}}$$



### Example: Writing the General Term Objective: Identify, write, and manipulate for a Geometric Sequence geometric sequences.

Solution Write the recursive rule for the nth term for the geometric sequence

- 3, 6, 12, 24, 48, ...
- Solve First term =  $a_1 = 3$  Common ratio =  $r = \frac{6}{3} = \frac{12}{6} = \frac{24}{12} = \frac{48}{24} = 2$ 
  - $a_{n} = 2a_{n-1}$



## Example: Writing the Terms of a Geometric Sequence

Solution Write the first six terms of the geometric sequence with first term 12 and common ratio  $\frac{1}{2}$ First term  $a_1 = 12$   $r = \frac{1}{2}$ Second term  $a_2 = \frac{1}{2} \cdot 12 = 6$ Third term  $a_3 = \frac{1}{2} \cdot 6 = 3$ 

First six terms = 1



Fourth term 
$$a_4 = \frac{1}{2} \cdot 3 = \frac{3}{2}$$
  
Fifth term  $a_5 = \frac{1}{2} \cdot \frac{3}{2} = \frac{3}{4}$   
Sixth term  $a_6 = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8}$ 

2, 6, 3, 
$$\frac{3}{2}$$
,  $\frac{3}{4}$ ,  $\frac{3}{8}$ , ...



## Geometric Sequence

 $\mathbf{b}$  The nth term (the general term) of a geometric sequence with first term  $\mathbf{a}_1$  and common ratio r is  $a_n = a_1 r^{n-1}$  $a_{2} = a_{1}r$   $a_{3} = a_{2}r = (a_{1}r)r = a_{1}r$ 

The previous example  $a_1 = 12, r = \frac{1}{2}$ 

$$a_{2} = 12\left(\frac{1}{2}\right) = 6$$
  
 $a_{4} = 12\left(\frac{1}{2}\right)^{3} = 12\left(\frac{1}{8}\right) = \frac{3}{2}$ 

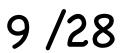


**Objective**: Identify, write, and manipulate geometric sequences.

$$a_1r^2$$
  $a_4 = a_3r = (a_1r^2)r = a_1r^3 \dots$ 

$$a_{3} = 12\left(\frac{1}{2}\right)^{2} = 3$$
  
 $a_{5} = 12\left(\frac{1}{2}\right)^{4} = 12\left(\frac{1}{16}\right) = \frac{3}{4}$ 





# Geometric Sequence

### The nth Term of a Geometric Sequence

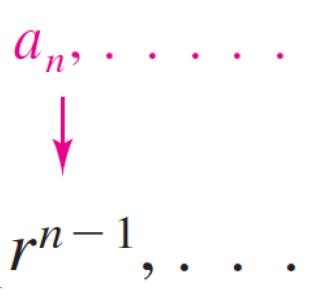
The *n*th term of a geometric sequence has the form

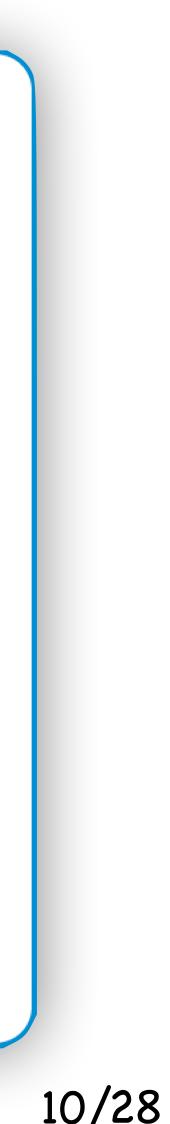
$$a_n = a_1 r^{n-1}$$

where r is the common ratio of consecutive terms of the sequence. So, every geometric sequence can be written in the following form.



**Objective**: Identify, write, and manipulate geometric sequences.







Solving Find the nth term for the geometric sequence with first term 5 and common ratio 2.

 $\mathbf{b}$  The nth term (the general term) of a geometric sequence with first term  $\mathbf{d}_1$  and common ratio r is  $a_n = a_1 r^{n-1}$ 

**Objective**: Identify, write, and manipulate geometric sequences.









# nth Term of a Geometric Sequence

Solving Find the seventh term of the geometric sequence whose first term is 5 and whose common ratio is -3.

common ratio r is  $a_n = a_1 r^{n-1}$ 



- $\mathbf{S}$  The nth term (the general term) of a geometric sequence with first term  $\mathbf{a}_1$  and

 $a_7 = 5(-3)^{7-1} = 5(-3)^6 = 5(729) = 3645$ 

 $\bigcirc$  The seventh term of the geometric sequence is 3645.

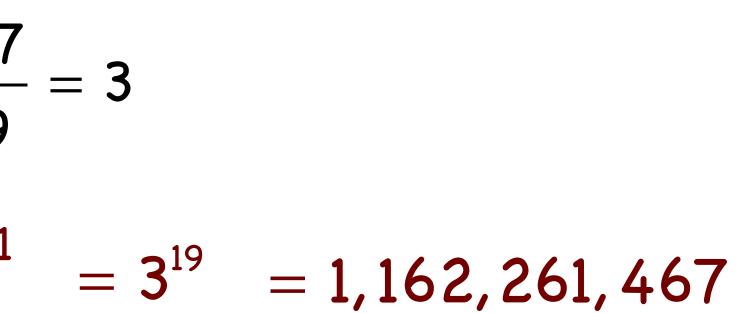
# nth Term of a Geometric Sequence

 $\bigcirc$  Find the twentieth term of the geometric sequence 1, 3, 9, 27, ...

First term  $a_1 = 1$   $r = \frac{3}{1} = \frac{9}{3} = \frac{27}{9} = 3$  $a_{n} = a_{1}r^{n-1}$   $a_{20} = 1(3)^{20-1} = 3^{19} = 1,162,261,467$ 

 $\bigcirc$  The twentieth term of the geometric sequence is 1,162,261,467.





# nth Term of a Geometric Sequence

Solve Find the fifteenth term of the geometric sequence with  $a_3 = \frac{5}{4}$ , and  $a_6 = \frac{5}{32}$ 

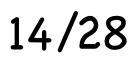
Method 1  $a_n = a_1 r^{n-1}$  $a_{3} = a_{1}r^{3-1}$   $\frac{5}{4} = a_{1}r^{2}$   $a_{1} = \frac{5}{4r^{2}}$  $a_6 = a_1 r^{6-1}$   $\frac{5}{32} = a_1 r^5$   $a_1 = \frac{5}{32 r^5}$  $\frac{5}{4r^2} = \frac{5}{32r^5} \qquad 4r^2 = 32r^5 \qquad r^3 = \frac{1}{8} \qquad r = \frac{1}{2} \qquad \text{So The fifteenth term of the } \frac{5}{163}$ 

**Objective**: Identify, write, and manipulate geometric sequences.

$$a_{1} = \frac{5}{4\left(\frac{1}{2}\right)^{2}} = 5$$
$$a_{15} = 5\left(\frac{1}{2}\right)^{14} = \frac{5}{16384}$$

16384





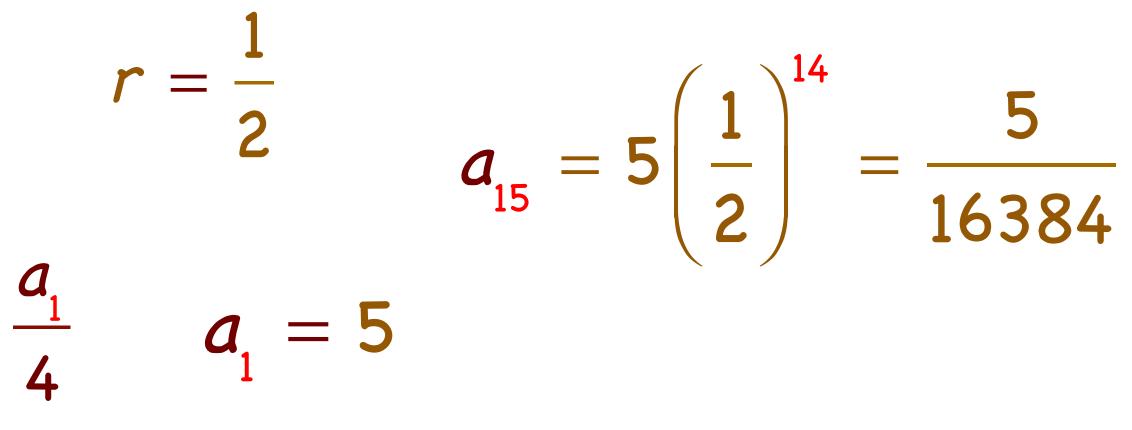
# nth Term of a Geometr

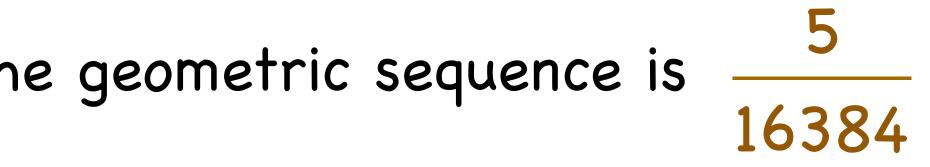
Method 2  $a_m = a_n r^{m-n}$  $a_{6} = a_{3}r^{6-3}$   $\frac{5}{32} = \frac{5}{4}r^{3}$   $r^{3} = \frac{1}{8}$   $r = \frac{1}{2}$   $a_{15} = 5\left(\frac{1}{2}\right)^{14} = \frac{5}{16384}$  $a_3 = a_1 r^{3-1}$   $\frac{5}{4} = a_1 \left(\frac{1}{2}\right)^2$   $\frac{5}{4} = \frac{a_1}{4}$   $a_1 = 5$ 

Solution The fifteenth term of the geometric sequence is

| ric Seauence | <b>Objective:</b> Identi |
|--------------|--------------------------|
|              | write, and manipu        |
|              | geometric sequer         |

Solve Find the fifteenth term of the geometric sequence with  $a_3 = \frac{5}{7}$ , and  $a_6 = \frac{5}{77}$ 

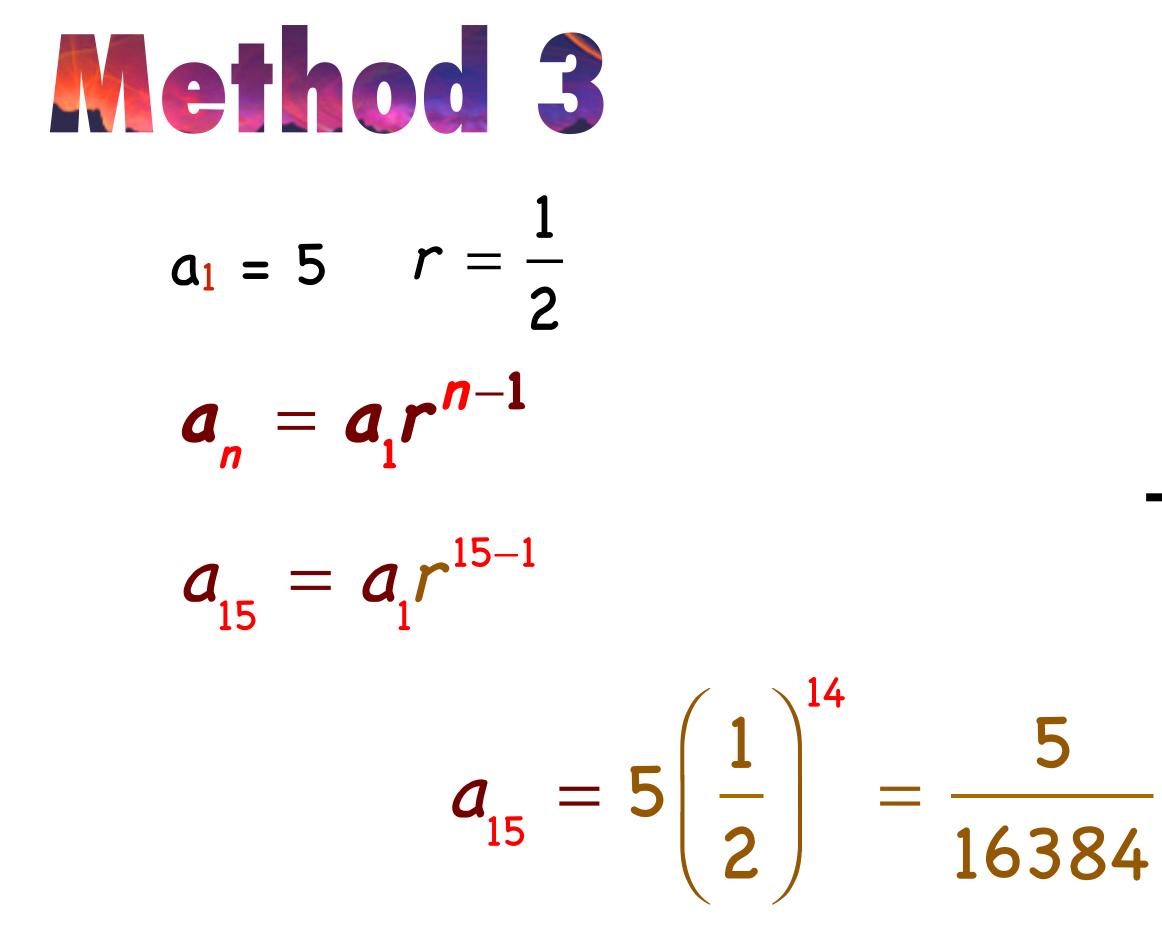




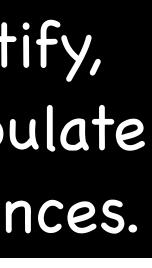




### Solve Find the fifteenth term of the geomet



| AN STATE |            |               |            |               |                 |                 | writ              | e, ar                  | ve: Iden<br>nd manip<br>ic seque |  |
|----------|------------|---------------|------------|---------------|-----------------|-----------------|-------------------|------------------------|----------------------------------|--|
| tri      | c se       | que           | nce        | wi            | th a3           | = <u>5</u><br>4 | , ar              | nd a6                  | $= \frac{5}{32}$                 |  |
|          | 5          | <u>1</u><br>2 | 5<br>2     | <u>1</u><br>2 | 5 <b>*</b><br>4 |                 | 5<br>32<br>5<br>4 | = <u>1</u><br><u>8</u> | <b>5</b><br><b>32</b>            |  |
| 4        | <b>a</b> 1 |               | <b>a</b> 2 |               | a <sub>3</sub>  |                 | $\frac{1}{8}$     | a5/<br>1<br>2          | <b>1</b> a6                      |  |



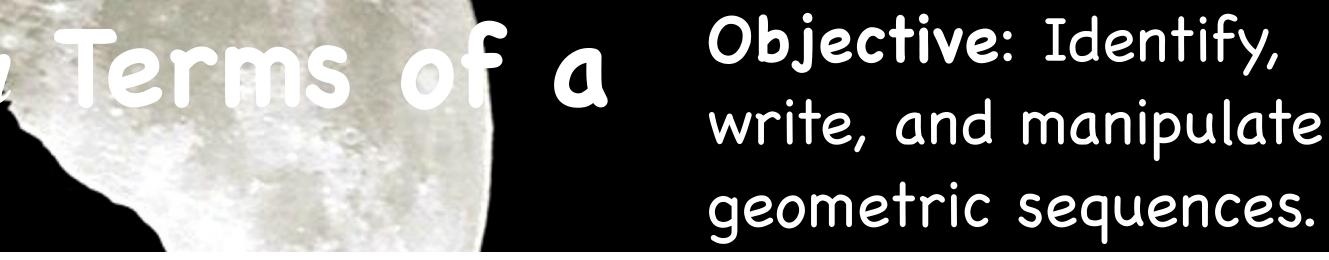
## The Sum of the First n Terms of a Geometric Sequence

 $\mathbf{b}$  The sum,  $\mathbf{S}_n$ , of the first n terms of a geometric sequence is given by

$$S_{n} = \frac{a_{1}(1-r^{n})}{1-r}$$
 a

Let us take the series  $S_5 =$ Multiply by r = 3  $3S_5 =$ Subtract the two  $(1-3)S_5 =$ 2

 $(1-3)S_5 = 2 - 486 = 2(1 - 243)$ 



- $l_1$  is the first term
- is the common ratio (r  $\neq$  1).
- 2 + 6 + 18 + 54 + 162 6 + 18 + 54 + 162 + 486 - 486
  - $S_{5} = \frac{2(1-243)}{1-3} = \frac{2(1-3^{5})}{1-3} = \frac{a_{1}(1-r^{n})}{1-r}$

# Sum of Partial Geometric Series

 $\mathbf{b}$  The sum,  $\mathbf{s}_n$ , of the first n terms of a geometric sequence is given by

$$S_{n} = rac{a_{1}(1-r^{n})}{1-r}$$
 a

Let us take the series  $S_n =$ Multiply by r  $rS_n =$ Subtract the two  $(1-r)S_n =$ **a**<sub>1</sub>

$$(1-r)S_n = a_1 - r^n a_1$$



**Objective**: Identify, write, and manipulate geometric sequences.

- $l_1$  is the first term
- is the common ratio (r  $\neq$  1).
- $a_1 + ra_1 + r^2 a_1 + \dots + r^{n-1} a_1$  $ra_1 + r^2 a_1 + ... + r^{n-1} a_1 + r^n a_1$

 $- r^n a_1$ 

$$S_{n} = \frac{a_{1} - r^{n}a_{1}}{1 - r} = \frac{a_{1}(1 - r^{n})}{1 - r}$$





- $\mathbf{b}$  The sum,  $\mathbf{S}_n$ , of the first n terms of a geometric sequence is given by  $a_1 + a_2 + a_3 + \dots + a_n = a_1 + ra_1 + r^2a_1 + \dots + r^{n-1}a_1$  $S_n = \sum_{i=1}^n a_i r^i$ 
  - the first term  $a_1$  is multiplied by 1 or r<sup>0</sup>.

**Objective**: Identify, write, and manipulate geometric sequences.

$$i^{-1} = \frac{a_1(1-r^n)}{1-r}$$

Solution With the summation notation, be careful with the exponent. Keep in mind



## Sum of a Finite Geometric Series

### The Sum of a Finite Geometric Sequence

The sum of the finite geometric sequence

 $a_1, a_1r, a_1r^2, a_1r^3, a_1r^4, \ldots$ 

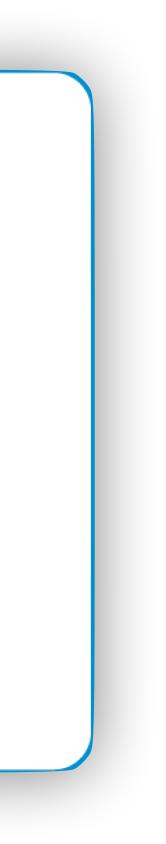
with common ratio  $r \neq 1$  is given by



**Objective**: Identify, write, and manipulate geometric sequences.

$$, a_1 r^{n-1}$$

y 
$$S_n = \sum_{i=1}^n a_1 r^{i-1} = a_1 \left( \frac{1 - r^n}{1 - r} \right).$$





## Finding the Sum of the First n Terms of a Geometric Sec

 $\odot$  Find the sum of the first nine terms of the geometric sequence: 2, -6, 18, -54, ...

$$a_1 = 2$$
  $r = \frac{-6}{2} = \frac{18}{-6} = \frac{-54}{18} = -3$   $S_n = \frac{a_1(1 - r^n)}{1 - r}$ 

$$S_{9} = \frac{a_{1}(1-r^{n})}{1-r} = \frac{2(1-(-3)^{9})}{1--3} =$$

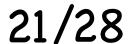
 $\bigcirc$  The sum is 9842



## $\frac{2(1-(-19683)}{4}=\frac{2(1+19683)}{4}=9842$







# Finding the Sum of the First n Terms of a Geometric Sequence

 $\bigcirc$  If that got past you, we simply need the first term and r.

$$a_1 = 2(0.1)^1 = .2$$
  $a_2 = 2(0.1)^2 = 2(0.01) = .02$   $r = \frac{.02}{.2} = .1$ 

**Objective**: Identify, write, and manipulate geometric sequences.



## The Sum of an Infinite Geometric Series

Subscripts the sum of a finite geometric series.  $S_n = \frac{a_1(1 - r^n)}{1 - r}$ Consider the case where  $n \rightarrow \infty$ . If |r| > 1,  $r^n$  will continue to get larger, without end. But if |r| < 1,  $r^n$  will get smaller, in fact, as  $n \rightarrow \infty$ ,  $r^n \rightarrow 0$ . Try graphing  $y = 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^{x}}{1 - \frac{1}{2}} = \frac{1 - \left(\frac{1}{2}\right)^{n}}{\frac{1}{2}}$  as  $x \rightarrow \infty$ , the graph  $\rightarrow 2$ so as  $n \rightarrow \infty$ ,  $S_{\infty} = \frac{a_1(1-0)}{1-r} \rightarrow S = \frac{a_1}{1-r}$ 

**Objective**: Identify, write, and manipulate geometric sequences.



# Infinite Geometric Series

Solution The sum of an infinite geometric series when |r| < 1 is

$$S = \sum_{i=1}^{\infty} a_i r^{i-1}$$



**Objective**: Identify, write, and manipulate geometric sequences.

$$=\sum_{i=0}^{\infty}a_{1}r^{i}=\frac{a_{1}}{1-r}$$

 $\bigcirc$  If |r| > 1, the infinite geometric series does not have a sum.



## Sum of an Infinite Geometric Series

## The Sum of an Infinite Geometric Series

If |r| < 1, the infinite geometric series

$$a_1 + a_1 r + a_1 r^2 + a_1 r^3 + \cdot \cdot$$

has the sum

$$S = \sum_{i=0}^{\infty} a_1 r^i = \frac{a_1}{1 - r}.$$



**Objective**: Identify, write, and manipulate geometric sequences.

 $\cdot + a_1 r^{n-1} + \cdot \cdot \cdot$ 





# Example: Finding the Sum of an Infinite Geometric Series

a<sub>1</sub> = 3  $r = \frac{2}{3} = \frac{\frac{4}{3}}{\frac{2}{2}} = \frac{\frac{8}{9}}{\frac{4}{3}} = \frac{2}{3}$  $S = \frac{a_1}{1-r} = \frac{3}{1-\frac{2}{3}} = \frac{3}{\frac{1}{3}} = 9$ 



Objective: Identify, write, and manipulate geometric sequences.

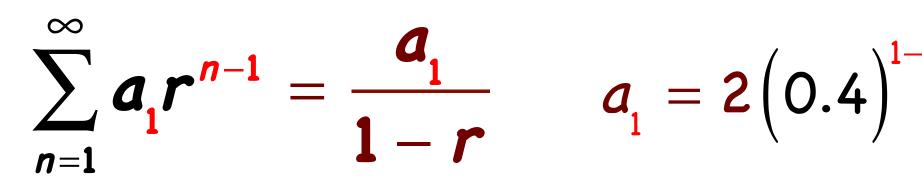
- Solve Find the sum of the infinite geometric series:  $3+2+\frac{4}{3}+\frac{8}{6}+...$



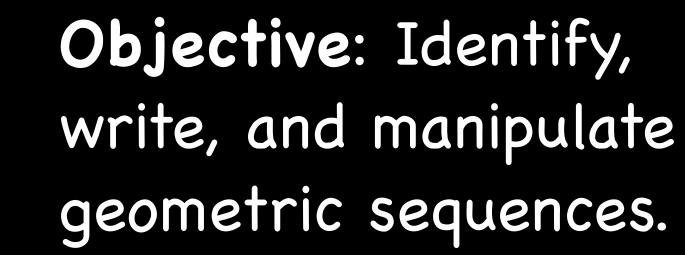
## Example



Solution Evaluate  $\sum_{n=1}^{\infty} 2(0.4)^{n-1}$ 



$$\sum_{n=1}^{\infty} 2(0.4)^{n-1} = \frac{2}{1-0.4} = \frac{2}{.6} = \frac{10}{3}$$



$$^{-1} = 2$$
  $a_2 = 2(0.4)^{2-1} = .8$   $r = \frac{.8}{2} = .4$ 



S A ball is dropped from a height of 10 feet. Each time it bounces back up, it bounces 0.65 times as high as it did on the previous bounce. What is the total distance traveled by the ball?

10 + 2(10)(.65) + 2[(10)(.65)](.65) + ...

 $= 10 + 2(10)(.65) + 2(10)(.65)^{2} + ...$ 

 $= 10 + 2[(10)(.65) + (10)(.65)^{2} + ...]$ 

$$= 10 + 2\sum_{n=1}^{\infty} 10(0.65)^{n} = 10 + 2\sum_{n=1}^{\infty} 10(0.65)^{n$$

 $= 10 + 2\left(\frac{6.5}{1 - .65}\right) = 10 + 2\left(\frac{6.5}{.35}\right) = 10 + 2\left(\frac{6.5}{.35}\right) \approx 47.1429 \ ft$ 

**Objective**: Identify, write, and manipulate geometric sequences.

