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Accuracy, Precision, and Experimental Error 
Communication of data is an important aspect of every experiment. You should 
strive to analyze and present data that is as correct as possible. Keep in mind 
that in the laboratory, neither the measuring instrument nor the measuring 
procedure is ever perfect. Every experiment is subject to experimental error. 
Data reports should describe the experimental error for all measured values.

Experimental error affects the accuracy and precision of data. Accuracy 
describes how close a measurement is to a known or accepted value. Suppose, 
for example, the mass of a sample is known to be 5.85 grams. A measurement 
of 5.81 grams would be more accurate than a measurement of 6.05 grams. 
Precision describes how close several measurements are to each other. The 
closer measured values are to each other, the higher their precision.

Measurements can be precise even if they are not accurate. Consider again 
a sample with a known mass of 5.85 grams. Suppose several students each 
measure the sample’s mass, and all of the measurements are close to 8.5 grams. 
The measurements are precise because they are close to each other, but none of 
the measurements are accurate because they are all far from the known mass of 
the sample.

Systematic errors are errors that occur every time you make a certain 
measurement. Examples include errors due to the calibration of instruments 
and errors due to faulty procedures or assumptions. These types of errors 
make measurements either higher or lower than they would be if there were 
no systematic errors. An example of a systematic error can occur when using 
a balance that is not correctly calibrated. Each measurement you make using 
this tool will be incorrect. A measurement cannot be accurate if there are 
systematic errors.

Random errors are errors that cannot be predicted. They include errors 
of judgment in reading a meter or a scale and errors due to fluctuating 
experimental conditions. Suppose, for example, you are making temperature 
measurements in a classroom over a period of several days. Large variations in 
the classroom temperature could result in random errors when measuring the 
experimental temperature changes. If the random errors in an experiment are 
small, the experiment is said to be precise.

Significant Digits

The data you record during an experiment should include only significant digits. 
Significant digits are the digits that are meaningful in a measurement or a 
calculation. They are also called significant figures. The measurement device 
you use determines the number of significant digits you should record. If you 
use a digital device, record the measurement value exactly as it is shown on 
the screen. If you have to read the result from a ruled scale, the value that you 
record should include each digit that is certain and one uncertain digit.
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Figure 1, for example, shows the same measurement made with two different 
scales. On the left, the digits 8 and 4 are certain because they are shown by 
markings on the scale. The digit 2 is an estimate, so it is the uncertain digit. 
This measurement has three significant digits, 8.42. The scale on the right has 
markings at 8 and 9. The 8 is certain, but you must estimate the digit 4, so it is 
the uncertain digit. This measurement is 8.4 centimeters. Even though it is the 
same as the measurement on the left, it has only two significant digits because 
the markings are farther apart.

Figure 1

Uncertainties in measurements should always be rounded to one significant 
digit. When measurements are made with devices that have a ruled scale, the 
uncertainty is half the value of the precision of the scale. The markings show 
the precision. The scale on the left has markings every 0.1 centimeter, so the 
uncertainty is half this, which is 0.05 centimeter (cm). The correct way to report 
this measurement is . The scale on the right has markings every 
1 centimeter, so the uncertainty is 0.5 centimeter. The correct way to report this 
measurement is .

The following table explains the rules you should follow in determining which 
digits in a number are significant:

Rule Examples

Non-zero digits are always significant. 4,735 km has four significant digits. 
573.274 in. has six significant digits.

Zeros before other digits are not significant. 0.38 m has two significant digits. 
0.002 in. has one significant digit.

Zeros between other digits are significant. 42.907 km has five significant digits. 
0.00706 in. has three significant digits. 
8,005 km has four significant digits.

Zeros to the right of all other digits 
are significant if they are to the 
right of the decimal point.

975.3810 cm has seven significant digits. 
471.0 m has four significant digits.

It is impossible to determine whether zeros 
to the right of all other digits are significant 
if the number has no decimal point. 

8,700 km has at least two significant  
digits, but the exact number is unknown. 
20 in. has at least one significant digits, 
but the exact number is unknown.

If a number is written with a decimal 
point, zeros to the right of all other 
numbers are significant.

620.0 km has four significant digits. 
5,100.4 m has five significant digits. 
670. in. has three significant digits.

All digits written in scientific 
notation are significant.

 cm has three significant digits.
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Analyzing data 
Analyzing data may involve calculations, such as dividing mass by volume 
to determine density or subtracting the mass of a container to determine the 
mass of a substance. Using the correct rules for significant digits during these 
calculations is important to avoid misleading or incorrect results.

When adding or subtracting quantities, the result should have the same number 
of decimal places (digits to the right of the decimal) as the least number of 
decimal places in any of the numbers that you are adding or subtracting.

The table below explains how the proper results should be written:

Example Explanation

The result is written with one decimal place because 
the number 3.7 has just one decimal place.

The result is written with two decimal places because 
the number 6.28 has just two decimal places.

The result is written with zero decimal places 
because the number 8 has zero decimal places.

Notice that the result of adding and subtracting has the correct number of 
significant digits if you consider decimal places. With multiplying and dividing, 
the result should have the same number of significant digits as the number in 
the calculation with the least number of significant digits.

The table below explains how the proper results should be written:

Example Explanation

The result is written with three 
significant digits because 2.30 
has three significant digits.

The result is written with two significant digits 
because 0.038 has two significant digits.

The result is written with two significant 
digits because 2.8 has two significant digits. 
[Note that scientific notation had to be used 
because writing the result as 210 would have 
an unclear number of significant digits.]

When calculations involve a combination of operations, you must retain one 
or two extra digits at each step to avoid round-off error. At the end of the 
calculation, round to the correct number of significant digits.

An exception to these rules is when a calculation involves an exact number, 
such as numbers of times a ball bounces or number of waves that pass a point 
during a time interval. As shown in the following example, do not consider exact 
numbers when determining significant digits in a calculation.
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Example:

While performing the Millikan oil-drop experiment, you find that a drop of oil has 
an excess of three electrons. What is the total charge of the drop?

 

When determining the number of significant digits in the answer, we ignore the 
number of electrons because it is an exact number.

Mean, Standard Deviation, and Standard Error 

You can describe the uncertainty in data by calculating the mean and the 
standard deviation. The mean of a set of data is the sum of all the measurement 
values divided by the number of measurements. If your data is a sample of a 
population (a much larger data set), then the mean you calculate is an estimate 
of the mean of a population. The mean, , is determined using this formula:

where , , etc., are the measurement values, and n is the number of 
measurements.

Standard deviation is a measure of how spread out data values are. If your 
measurements have similar values, then the standard deviation is small. Each 
value is close to the mean. If your measurements have a wide range of values, 
then the standard deviation is high. Some values may be close to the mean, but 
others are far from it. If you make a large number of measurements, then the 
majority of the measurements are within one standard deviation above or below 
the mean. (See “Confidence Intervals” on page 6 for a graph of the standard 
deviation ranges.) 

Since standard deviations are a measure of uncertainty, they should be standard 
using only one significant digit. Standard deviation is commonly represented by 
the Greek symbol sigma, , for data that is from a sample of a population; and by 
the symbol, s, for data that is from a sample.

You calculate standard deviation using this formula:
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When you make multiple measurements of a quantity, the standard error, 
SE, of the data set is an estimate of its precision. It is a measure of the data’s 
uncertainty, but it reduces the standard deviation if a large number of data 
values are included. You calculate standard error using this formula: 

 

Example:

Suppose you measure the following values for the temperature of a substance:

Trial 1 2 3 4

Temperature 20.5 22.0 19.3 23.0

The mean of the data is:

The standard deviation of the data is:

 

The standard error is:

 

Using the standard deviation, we would report the temperature as .  
Since we only have a few data values, a standard deviation of  shows that 
most of the data values were close to the mean. If, however, we had taken a 
large number of measurements, the standard deviation would show that the 
majority (specifically, 68%; see “Confidence Intervals” below) of the data values 
were between  and . Alternatively, the data could be reported using 
the standard error as .
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Confidence Intervals 

A confidence interval is a range of values within which the true value has a 
probability of being. If you measure a single quantity, such as the mass of a 
certain isotope, multiple times, you would expect a small standard deviation 
compared to the mean, so the confidence intervals would be narrow. A wide 
confidence interval in this case would indicate the possibility of random errors in 
your measurements. 

Confidence intervals can be presented in different ways. The following graph 
illustrates a method commonly used in physics:

This method applies only to data that has a normal (bell-shaped) distribution. 
The mean lies at the peak of the distribution. Confidence intervals on either side 
of the peak describe multiples of the standard deviation from the mean. The 
percentage associated with each confidence interval (68%, 95%, and so on) has 
been determined by calculating the area under the curve. 

A wide variety of data types in various subjects follow a bell curve distribution. 
In physics, bell curves apply to repeated measurements of a single value, 
such as measuring fluorescence decay time. A bell-shaped distribution is not 
appropriate when more than one central value is expected, or when only a few 
measurements are made.

Propagation of Error 

If calculations involve the results of two or more measurements, you must state 
the combined uncertainty of the measurements.

The combined uncertainty of quantities that are added or subtracted is the 
square root of the sum of the squares of their individual uncertainties. If, for 
example, you calculate a quantity , where F, G, and H are measured 
values, and their uncertainties are , , and , where the , in this 
case, means “the uncertainty of.” The uncertainty of K, then, is:
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Example:

Suppose you measure the masses of two objects as  kilograms and 
 kilograms. The combined uncertainty is: 

The sum of the masses would have three significant figures and their combined 
uncertainty should be recorded as  kilograms.

To calculate the combined uncertainty of quantities that are multiplied or 
divided, the uncertainties must be divided by the mean values. Suppose that 
now . The combined uncertainty when multiplying or dividing is:

Example:

Suppose you want to calculate the magnitude of the acceleration of an object. 
You measure the net force on the object, , and the mass of the 
object,  kilograms. The acceleration without the uncertainty is:

 

The combined uncertainty is:

 

The acceleration should then be recorded as .

Comparing Results: Percent Difference and Percent Error 

If two lab groups measure two different values for an experimental quantity, you 
may be interested in how the values compare to each other. A large difference, 
for example, might indicate errors in measurements or other differences in 
measurement procedures. A comparison of values is often expressed as a 
percent difference, defined as the absolute value of the difference divided by 
the mean, with the result multiplied by 100:
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You may instead want to compare an expected or theoretical value to a 
measured value. Knowing that your value is either close to or far from a known 
value can suggest whether your experimental procedure is reliable. In this 
case you can calculate the percent error, defined as the absolute value of the 
difference divided by the expected value, with the result multiplied by 100:

 

Note that when the expected value is very small, perhaps approaching zero, 
the percent error gets very large because it involves dividing by a very small 
number. It is undefined when the expected value is zero. Percent error may not 
be a useful quantity in these cases. 
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Graphs 
Graphs are often an excellent way to present or to analyze data. When making 
graphs, there are a few guidelines you should follow to make them as clear as 
possible:

 ▶ Each axis should be labeled with the variable that is plotted and its units.

 ▶ Each axis should include a reasonable number of labeled tick marks at even 
intervals. Having too many tick marks will make the graph crowded and hard to 
read. Having too few will make the value of data points difficult to determine.

 ▶ Typically, graphs should be labeled with a meaningful title or caption.

Independent and Dependent Variables 

When you graph data, you most often choose to plot an independent variable 
versus a dependent variable. The independent variable is plotted on the x-axis, 
and the dependent variable is plotted on the y-axis. 

An independent variable is a variable that stands alone and isn’t changed by 
the other variables you are trying to measure. For example, time is often an 
independent variable: in kinematics, distance, velocity, and acceleration are 
dependent on time, but do not affect time. 

A dependent variable is something that depends on other variables. For 
example, in constant acceleration motion, position of a body will change with 
time, so the position of the body is dependent on time, and is a dependent 
variable. 

Graphing Data as a Straight Line 

When you make a plot on x-y axes, a straight line is the simplest relationship 
that data can have. Graphing data points as a straight line is useful because 
you can easily see where data points belong on the line. A line makes the 
relationships of the data easy to understand. 

You can represent data as a straight line on a graph as long as you can identify 
its slope, , and its y-intercept, , in a linear equation: . The slope 
is a measure of how y varies with changes in x: . The y-intercept is 
where the line crosses the y-axis (where ). 
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Linearizing Data 

Even if the data you take do not have a linear relationship, you may be able to 
plot it as a straight line by revising the form of the variables in your graph. One 
method is to change a relationship so that is has the linear form of  

by substitution. For powers of x, the data would be in the form . To 
linearize this data, substitute  for the x in the linear equation. Then you can 
plot y versus  as a linear graph. For example, graphing kinetic energy, KE, and 

velocity, v,  for the function , yields a parabola, as shown in Graph 1 

below. But if we we set the horizontal axis variable equal to  instead, the 
graph is linear, as shown in Graph 2:

  

 Graph 1   Graph 2

If the data is exponential, as in , or is a power of x, as in , taking 
the log of both sides of the equation will linearize them. For exponential data, 
the equation you obtain is  The data will approximate a line 
with y-intercept  and slope b. 

Similarly, for an equation with a power of x, taking the log of both sides of 
 results in . If you plot  the 

data will approximate a line with y-intercept  and slope n, as shown in 
Graphs 3 and 4 below.

  

 Graph 3   Graph 4
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Curve Fitting 

A useful way to analyze data is to determine whether it corresponds to a certain 
mathematical model. The first step is to plot the points and see if it follows a 
recognizable trend, such as a linear, quadratic, or exponential function. The 
graphs below show examples of each of these types.

The general equation of a linear function is , where m is slope 
and b is the y-intercept. For example, a linear function in physics is the time 
dependence of the velocity of an object undergoing constant acceleration, 

, where the acceleration, a, is the slope and the initial velocity, , is 
the y-intercept.

The general equation of a quadratic function is , where a, b, and 
c are arbitrary constants. An example of a quadratic function in physics is spring 

potential energy, , where x is the distance the spring is stretched from 

equilibrium, k is the spring constant, and in this case the constants b and c 
are zero. Another example of a quadratic function is the position as a function 

of time for a constantly accelerating object, , where a is 

acceleration,  is initial velocity, and  is initial position. 

The general equation of an exponential function is , where A and b 
are arbitrary constants. An example of the exponential function in physics is 
the number of radioactive particles left after a certain time of radioactive decay, 

, where  is the original number of particles, and  is the decay rate. 
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If the pattern is clearly linear, or if you can plot the data using linearization, you 
can use a straightedge to draw a best fit line that has approximately the same 
number of points above and below the line. You can then determine an equation 
of the line by identifying the slope and y-intercept from the best fit line.

If a more exact equation is desired, or if the data do not clearly follow a linear 
pattern, you can use a graphing calculator or a computer to fit the data to a 
mathematical model. In this case, you input the data and choose the model that 
you think will best fit the data. This is called regression analysis. Regression 
analysis is a common curve-fitting procedure. An analysis using this procedure 
provides parameters for the equation you have chosen for the fit, as well as 
parameters that describe how well the data fit the model. Graphs 5 and 6 below 
show the same data using a linear model and a quadratic model. The value  is 
the coefficient of determination. It indicates how well the model fits the data. 
A value closer to 1 indicates a better fit. In the examples below, both models are 
a good fit for the data, but the  values show that the quadratic model is better.

  

 Graph 5 Graph 6
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Helpful Links 
“Averaging, Errors and Uncertainty.” Department of Physics and Astronomy. 
University of Pennsylvania. Accessed January 6, 2015. https://www.physics.
upenn.edu/sites/www.physics.upenn.edu/files/Error_Analysis.pdf.

“Excel 2013 Training Course, Videos and Tutorials.” Microsoft Office. Accessed 
January 6, 2015. http://office.microsoft.com/en-us/excel-help/training-courses-
for-excel-2013-HA104032083.aspx.

“Functions and Formulas.” Google Help (for Google Sheets). Accessed 
January 6, 2015. https://support.google.com/docs/topic/1361471?hl=en&ref_
topic=2811806.

“Intro to Excel.” Department of Physics and Astronomy. University of 
Pennsylvania. Accessed January 6, 2015. https://www.physics.upenn.edu/sites/
www.physics.upenn.edu/files/Introduction_to_Excel.pdf.

“Useful Excel Commands for Lab.” Department of Physics. Randolph College. 
Accessed January 6, 2015. http://physics.randolphcollege.edu/lab/IntroLab/
Reference/exchint.html.
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